Holooly Plus Logo

Question 8.4: For a simple radial distribution system shown in Figure 8.13......

For a simple radial distribution system shown in Figure 8.13 and considered for Examples 8.1 through 8.3 (8.1 ,8.2, 8.3), determine the short-circuit at points E and F if the system specifications are
• Second Transformer: 200 \ kVA,480 \ Y/277-208 \ Y/120
Z_{T,2}=5\%,\frac{X}{R}=1.5
• Subfeeder BE: 250 MCM THW (Cu), 50-ft length, steel conduit
• Impedance at point B: Z_{B,pu}=0.0565,\frac{X}{R}=2.4

 

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Using Equation 8.8, the impedance at point E can be estimated:

Z_B=Z_A+Z_F                                                (8.8)

Z_E(pu)=Z_{B,pu}+Z_{Feeder,BE}(pu)

with

Z_B(pu) \text{given with}\frac{X}{R}=2.4

Thus,

Z_B(pu)=0.0565[\cos 67^\circ +j\sin 67^\circ ]=0.0218+j0.0528

For the feeder BE, the impedance can be obtained from Table 8.1:

\begin{matrix} R=\frac{0.054}{1000 \ ft}\rightarrow R=0.0027 \\ X=\frac{0.052}{1000 \ ft}\rightarrow R=0.0026 \end{matrix}

The reference impedance, Z_{ref,1}, for the feeder BE is defined by Equation 8.9 using the first transformer rated at 1000~kVA and secondary phase voltage of E_{\phi ,S,1}=277~ V and phase current, I_{\phi ,S,1} = I_{L,S,1}:

Z_{ref}(\Omega )=\frac{E_{\Phi ,S}}{I_{\Phi ,S}}                   (8.9)

Z_{ref,1}=\frac{E_{\phi ,S,1}}{I_{\phi ,s,1}}=\frac{277}{1202}=0.23 \ \Omega

with the secondary current for the first transformer, IL,S,1, as calculated in Example 8.1:

I_{L,S,1}=\frac{1000 \ kVA}{\sqrt{3}(0.48 \ kV) }=1202 \ A

Thus, the per-unit impedance for feeder BE is

Z_{Feeder,BE}(pu)=\frac{0.0027}{0.23 }+j\frac{0.0026}{0.23}

or

Z_{Feeder,BE}(pu)=0.0117+j00113

Thus, the per-unit impedance at point E can be determined using Equation 8.8:

Z_B=Z_A+Z_F                                                (8.8)

Z_E(pu)=(0.0218+0.0117)+j(0.0521+0.0113)=0.0335+j0.0634

The magnitude of the per-unit impedance at point E, Z_E, is then

\left|Z_E(pu)\right|=\sqrt{0.0335^2+0.0634^2}=0.0718

It should be noted that the X/R value of the impedance , Z_E can be calculated as X/R = 0.0634/0.0335 = 1.9, which corresponds to a phase angle of 62.1°.
The short-circuit current expressed in per-unit at point E is calculated to be

I_{SC,E}(pu)=\frac{1}{0.0718}=13.94

The short-circuit current in Amperes at point E is then

I_{SC,E}=13.94\times 1202=16,750 \ A

The per-unit impedance at point F (at the secondary side of the second transformer) is estimated using Equation 8.12:

Z_F=\frac{1}{a^2}Z_E+Z_{T,2}                        (8.12)

Z_F(pu)=Z_{T,2}(pu)+Z_{S,E}(pu)

with

Z_F=\frac{1}{a^2}Z_E

Since the equation here is only applicable when the impedances are expressed in Ohms, the impedance at point E is converted to be expressed in Ohms:

Z_E(\Omega )=Z_{ref,1}(\Omega )+Z_{E}(pu)

or

Z_E(\Omega )=(0.23 \ \Omega )*(0.0718)=0.0165 \ \Omega

The turn ratio of the second transformer can be calculated as

a=\frac{480}{208}=2.3

Thus,

Z_{S,E}=\frac{1}{a^2}Z_E=0.00312 \ \Omega

The impedance of the second transformer, Z_{T,2}, can be obtained from the values of X/Rand percent transformer impedance:

Z_{T,2}(pu)=\left\|Z_{T,2}(pu)\right\|\cdot \cos (\theta )+j\sin (\theta )

with

\sin (\theta )\rightarrow \tan^{-1}(\frac{X}{R} )

or

\tan ^{-1}(1.5)=56.3^\circ

Thus, the per-unit transformer impedance is

Z_{T,2}(pu)=0.05\times \cos (56.3^\circ )+j\sin (56.3^\circ )

or

Z_{T,2}(pu)=0.0278+j0.0416

It should be noted that for points F and G, the reference impedance is related to second transformer characteristics and is defined as

Z_{ref,2}=\frac{E_{\phi ,s,2}}{I_{\phi ,S,2}}=\frac{120 \ V}{555 \ A}=0.216 \ \Omega

since the reference voltage is the secondary phase voltage for the second transformer, that is, E_{\phi ,s,2}= 120 \ V, and the reference current is

I_{L,S,2}=\frac{200 \ kVA}{\sqrt{3}(0.208 \ kV) }=555 \ A

Thus,

Z_{E,S}(pu)=\frac{Z_E(\Omega )}{Z_{ref,2}} Z_{E,S}(pu)=\frac{0.00312 }{0.216}[\cos 62.1^\circ +j\sin 62.1^\circ ]=0.00675+j0.01276

Therefore, the per-unit impedance at point F can be calculated:

Z_F(pu)=0.0345+j0.0544

The magnitude of the per-unit impedance at point F is then

\left\|Z_F(pu)\right\|=\sqrt{0.0345^2+0.0544^2}=0.06438

Finally, the per-unit and the actual short-circuit current at point F can be estimated:

I_{SC,F}(pu)=\frac{1}{0.06438}=15.53

Therefore and since the reference current is 555 \ A,

I_{SC,F}(A)=15.53\times 555 \ A=8600 \ A

TABLE 8.1
Resistance and Reactance of Feeders Made Up of Three Copper Conductors in a Conduit for Three-Phase Systems

Reactance (Ω/1000 ft [Ω /1000 m]) Resistance (Ω/1000 ft [Ω /1000 m]) Wire Size in
AWG or MCM
Steel Conduit PVC, Aluminum Conduit Steel Conduit Aluminum Conduit PVC Conduit
0.073 (0.240) 0.058 (0.190) 3.1 (10.2) 3.1 (10.2) 3.1 (10.2) 14
0.068 (0.223) 0.054 (0.177) 2.0 (6.6) 2.0 (6.6) 2.0 (6.6) 12
0.063 (0.207) 0.050 (0.164) 1.2 (3.9) 1.2 (3.9) 1.2 (3.9) 10
0.065 (0.213) 0.052 (0.171) 0.78 (2.56) 0.78 (2.56) 0.78 (2.56) 8
0.064 (0.210) 0.051 (0.167) 0.49 (1.61) 0.49 (1.61) 0.49 (1.61) 6
0.060 (0.197) 0.048 (0.157) 0.31 (1.02) 0.31 (1.02) 0.31 (1.02) 4
0.059 (0.194) 0.047 (0.154) 0.25 (0.82) 0.25 (0.82) 0.25 (0.82) 3
0.057 (0.187) 0.045 (0.148) 0.19 (0.62) 0.19 (0.62) 0.19 (0.62) 2
0.057 (0.187) 0.046 (0.151) 0.15 (0.49) 0.15 (0.49) 0.15 (0.49) 1
0.055 (0.180) 0.044 (0.144) 0.12 (0.39) 0.12 (0.39) 0.12 (0.39) 1/0
0.054 (0.177) 0.043 (0.141) 0.10 (0.33) 0.10 (0.33) 0.10 (0.33) 2/0
0.052 (0.171) 0.042 (0.138) 0.079 (0.259) 0.082 (0.269) 0.077 (0.253) 3/0
0.051 (0.167) 0.041 (0.135) 0.063 (0.207) 0.067 (0.220) 0.062 (0.203) 4/0
0.052 (0.171) 0.041 (0.135) 0.054 (0.177) 0.057 (0.187) 0.052 (0.171) 250 MCM
0.051 (0.167) 0.041 (0.135) 0.045 (0.148) 0.049 (0.161) 0.044 (0.144) 300 MCM
0.050 (0.164) 0.040 (0.131) 0.039 (0.128) 0.043 (0.141) 0.038 (0.125) 350 MCM
0.049 (0.161) 0.040 (0.131) 0.035 (0.115) 0.038 (0.125) 0.033 (0.108) 400 MCM
0.048 (0.157) 0.039 (0.128) 0.029 (0.095) 0.032 (0.105) 0.027 (0.089) 500 MCM
Note: This table is adapted from NEC-2014 Table 9, Chapter 9 (NEC, 2014).

Related Answered Questions