Holooly Plus Logo

Question 10.7: In a hollow rectangular waveguide with an aspect ratio a/b =......

In a hollow rectangular waveguide with an aspect ratio a/b = 2 (a < 10[cm] ), the TE mode of propagation gives \mathscr{E} = 4(\pmb{a}_{x} – \pmb{a}_{y})\sin (20\pi z – 1.8\pi \times 10^{10}t) [V/m] at a point ( x = a/8 and y = b / 4 ) on the cross section of the waveguide. Find

(a) phase velocity,

(b) cutoff frequency, and

(c) complete expression for \mathscr{E} in the waveguide.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) From the given \mathscr{E}, we obtain \beta _{mn} = 20\pi ,  and  \omega = 1.8\pi \times 10^{10}.

The phase velocity is, from Eq. (10-52a),

v_{p(mn)} = \frac{\omega }{\beta _{mn}} = f \lambda _{mn}                                                                      (10-52a)

v_{p(mn)} = \frac{\omega }{\beta _{mn}} = \frac{1.8 \pi \times 10^{10}}{20\pi } = 9 \times 10^{8}[m/s]

(b) Rewriting Eq. (10-48) we have

\boxed{\beta_{mn} = k \sqrt{1 – \left\lgroup \frac{f_{c(mn)}}{f} \right\rgroup ^{2} } }                             [rad/m]                                (10-48)

f_{c(mn)} = f \sqrt{ 1 – \left\lgroup\frac{\beta _{mn} c}{\omega }\right\rgroup ^{2} } = 9 \times 10^{9} \sqrt{1 – \left\lgroup\frac{20\pi \times 3\times 10^{8}}{1.8\pi \times 10^{10}} \right\rgroup ^{2}} = 8.485[GHz]

(c) Inserting x = a/8 and y = b/4 into the general expression for the TE_{mn} mode given in Eqs. (10-75a) and (10-75b), we have

\boxed{E_{x} =\frac{j\omega \mu }{h^{2}} \left\lgroup\frac{n\pi }{b} \right\rgroup H_{o} \cos \left\lgroup \frac{m\pi }{a}x \right\rgroup \sin \left\lgroup\frac{n\pi }{b}y \right\rgroup}    (m,n = 0,1,2,…)   (10-75a) \\ \boxed{E_{y} = – \frac{j\omega \mu }{h^{2}} \left\lgroup \frac{m\pi }{a} \right\rgroup H_{o} \sin \left\lgroup\frac{m\pi }{a}x \right\rgroup \cos \left\lgroup\frac{n\pi }{b}y \right\rgroup }                                                               (10-75b) \\\boxed{H_{x} = \frac{\gamma }{h^{2}} \left\lgroup\frac{m \pi }{a} \right\rgroup H_{o} \sin \left\lgroup \frac{m\pi }{a}x \right\rgroup \cos \left\lgroup \frac{n\pi }{b} y\right\rgroup}                                                              (10-75c)\\ \boxed{H_{y} = \frac{\gamma }{h^{2}} \left\lgroup\frac{n \pi }{b} \right\rgroup H_{o} \cos \left\lgroup \frac{m\pi }{a}x \right\rgroup \sin \left\lgroup \frac{n\pi }{b} y\right\rgroup}                                                    (10-75d) \\  \\ E_{x} =\frac{j\omega \mu }{h^{2}} \left\lgroup\frac{n\pi }{b} \right\rgroup H_{o} \cos \left\lgroup\frac{m\pi }{8} \right\rgroup \sin \left\lgroup\frac{n\pi }{4} \right\rgroup                              (10-84a) \\ E_{y} = – \frac{j\omega \mu }{h^{2}} \left\lgroup\frac{m\pi }{a} \right\rgroup H_{o} \sin \left\lgroup\frac{m\pi }{8} \right\rgroup \cos \left\lgroup\frac{n\pi }{4} \right\rgroup                             (10-84b)

If the electric fields in Eq. (10-84) are combined, it should be of the form 4(\pmb{a}_{x} – \pmb{a}_{y}) as given in the problem. Thus, using a = 2b , from Eq. (10- 84) we obtain

n\pi \cos \left\lgroup\frac{m\pi }{8} \right\rgroup \sin \left\lgroup\frac{n\pi }{4} \right\rgroup = (m\pi /2) \sin \left\lgroup \frac{m\pi }{8} \right\rgroup \cos \left\lgroup\frac{n\pi }{4} \right\rgroup

Rewriting it we obtain

\left\lgroup\frac{n\pi }{4} \right\rgroup \tan \left\lgroup\frac{n\pi }{4} \right\rgroup = \left\lgroup \frac{m \pi }{8} \right\rgroup \tan \left\lgroup\frac{m \pi }{8} \right\rgroup

This is of the form X tanX = Y tan Y, and thus the solution must be

X = Y , or

m = 2n                                                                                                     (10-85)
Next, from Eq. (10-46), the cutoff frequency is

f_{c(mn)} = \frac{1}{2\sqrt{\mu \epsilon } } \sqrt{ \left\lgroup \frac{m}{a} \right\rgroup^{2} + \left\lgroup\frac{n}{b} \right\rgroup^{2} }                          [Hz]                                 (10-46)

f_{c(mn)} = \frac{1}{2 \sqrt{\mu _{o} \epsilon _{o}} }\sqrt{\left\lgroup\frac{m}{a} \right\rgroup^{2} + \left\lgroup\frac{n}{b} \right\rgroup ^{2}} = 8.485 \times 10^{9}                                (10-86)

Solving Eqs. (10-85) and (10-86) for the mode numbers, using a = 2b, we get

n /b = 40                                                                                                              (10-87a)

m /a = 40                                                                                                             (10-87b)

Inserting Eq. (10-87) into the general expressions for E given in Eq. (10-75), we get

\mathscr{E} = A \left[ \pmb{a}_{x} \cos (40 \pi x) \sin (40\pi y) – \pmb{a}_{y} \sin (40 \pi x) \cos (40\pi y)\right] \\ \quad \times \sin (20\pi z – 1.8\pi \times 10^{10}t) [V/m]                                         (10-88)

where A is a constant.

Inserting x = a/8 and y = b/4 into Eq. (10-88), and comparing Eq. (10-88) with the given \mathscr{E} in the problem, we obtain

a = 1/20 , b = 1/40 , and A = 8
Finally, the real instantaneous electric field of the mode of operation is

\mathscr{E} = 8 \left[ \pmb{a}_{x} \cos (40 \pi x) \sin (40\pi y) – \pmb{a}_{y} \sin (40 \pi x) \cos (40\pi y)\right] \\ \quad \times \sin (20\pi z – 1.8\pi \times 10^{10}t) [V/m].

Related Answered Questions

Question: 10.4

Verified Answer:

From Eq. (10-41) we write \boxed{E_{z}(x, y...