Holooly Plus Logo

Question 10.10: Show that the TMmn and TEmn modes are independent of each ot......

Show that the TM_{mn} and TE_{mn} modes are independent of each other in a rectangular waveguide, even though they have the same phase constant and the same group velocity.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The electric and magnetic field phasors of the TM_{mn} mode, \pmb{E}_{TM} and \pmb{H}_{TM}, are expressed by Eqs. (10-41) and (10-56), whereas the phasors \pmb{E}_{TE} and \pmb{H}_{TE} of the TE_{mn} mode are expressed by Eqs. (10-74) and (10-75).

\boxed{E_{z} (x, y) = E_{o} \sin \left\lgroup\frac{m\pi }{a} x \right\rgroup \sin \left\lgroup\frac{n\pi }{b} y \right\rgroup }             (m, n = 1,2,3,…)                 (10-41)  \\  \boxed{E_{x} = – \frac{\gamma }{h^{2}} \left\lgroup\frac{m\pi }{a} \right\rgroup E_{o}\cos \left\lgroup\frac{m \pi }{a} x \right\rgroup \sin \left\lgroup\frac{ n \pi }{b} y \right\rgroup }     (m, n= 1,2,3,… )    (10-56a) \\ \boxed{E_{y} = – \frac{\gamma }{h^{2}} \left\lgroup\frac{n\pi }{b} \right\rgroup E_{o}\sin \left\lgroup\frac{m \pi }{a} x \right\rgroup \cos \left\lgroup\frac{ n \pi }{b} y \right\rgroup }                               (10-56b) \\ \boxed{H_{x} = \frac{j \omega \epsilon }{h^{2}} \left\lgroup\frac{n \pi }{b} \right\rgroup E_{o}\sin \left\lgroup\frac{m \pi }{a} x \right\rgroup \cos \left\lgroup\frac{ n \pi }{b} y \right\rgroup }                               (10-56c) \\ \boxed{H_{y} = – \frac{j \omega \epsilon }{h^{2}} \left\lgroup\frac{m\pi }{a} \right\rgroup E_{o}\cos \left\lgroup\frac{m \pi }{a} x \right\rgroup \sin \left\lgroup\frac{ n \pi }{b} y \right\rgroup }                                (10-56d) \\  \boxed{H_{z}(x,y) = H_{o} \cos \left\lgroup\frac{m\pi }{a} x \right\rgroup \cos \left\lgroup\frac{n\pi }{b}y \right\rgroup }               ( m,n = 0,1,2,…)                     (10-74) \\  \boxed{E_{x} =\frac{j\omega \mu }{h^{2}} \left\lgroup\frac{n\pi }{b} \right\rgroup H_{o} \cos \left\lgroup \frac{m\pi }{a}x \right\rgroup \sin \left\lgroup\frac{n\pi }{b}y \right\rgroup}   (m,n = 0,1,2,…) (10-75a) \\ \boxed{E_{y} = – \frac{j\omega \mu }{h^{2}} \left\lgroup \frac{m\pi }{a} \right\rgroup H_{o} \sin \left\lgroup\frac{m\pi }{a}x \right\rgroup \cos \left\lgroup\frac{n\pi }{b}y \right\rgroup }                                                               (10-75b) \\\boxed{H_{x} = \frac{\gamma }{h^{2}} \left\lgroup\frac{m \pi }{a} \right\rgroup H_{o} \sin \left\lgroup \frac{m\pi }{a}x \right\rgroup \cos \left\lgroup \frac{n\pi }{b} y\right\rgroup}                                                              (10-75c)\\ \boxed{H_{y} = \frac{\gamma }{h^{2}} \left\lgroup\frac{n \pi }{b} \right\rgroup H_{o} \cos \left\lgroup \frac{m\pi }{a}x \right\rgroup \sin \left\lgroup \frac{n\pi }{b} y\right\rgroup}                                                    (10-75d)

The total electric and magnetic fields in the waveguide are therefore

\pmb{E} = \pmb{E}_{TM} + \pmb{E}_{TE}                                                                      (10-106a) \\ \pmb{H} = \pmb{H}_{TM} + \pmb{H}_{TE}                                                                     (10-106b)

The time-average power density in the waveguide is

\left\langle P \right\rangle =\int_{S}{\left\langle \pmb{S} \right\rangle } \pmb{\cdot } d \pmb{s} = \frac{1}{2} Re\int_{S}{ \left\lgroup \pmb{E} \times \pmb{H}^{*}\right\rgroup \pmb{\cdot } \pmb{a}_{z} dx dy} \\ \quad \quad = \frac{1}{2} Re \left[\int_{S}{\left\lgroup\pmb{E}_{TM} \times \pmb{H}^{*}_{TM} + \pmb{E}_{TE} \times \pmb{H}^{*}_{TE} \right\rgroup \pmb{\cdot } \pmb{a}_{z} dx dy} \right] \\ \quad \quad + \frac{1}{2} Re \left[\int_{S}{\left\lgroup\pmb{E}_{TM} \times \pmb{H}^{*}_{TE} + \pmb{E}_{TE} \times \pmb{H}^{*}_{TM} \right\rgroup \pmb{\cdot } \pmb{a}_{z} dx dy} \right]                            (10-107)

The integrand of the second integral on the right-hand side of Eq. (10-107) is written as

\pmb{E}_{TM} \times \pmb{H}^{*}_{TE} + \pmb{E}_{TE} \times \pmb{H}^{*}_{TM} = (E_{x , TM} H^{*}_{y , TE} + E_{y , TM} H^{*}_{x , TE}) \\ \quad \quad \quad \quad  \quad \quad \quad \quad \quad \quad \quad \quad  + (E_{x , TE} H^{*}_{y , TM} + E_{y , TE} H^{*}_{x , TM})                       (10-108)

Substitution of Eqs. (10-56) and (10-75) into Eq. (10-108), in conjunction with \gamma = j \beta _{mn}, shows that each parenthesis on the right-hand side of Eq. (10-108) vanishes during the integration. Thus, Eq. (10-107) becomes

\left\langle P \right\rangle = \frac{1}{2} Re \left[\int_{S}{\left\lgroup\pmb{E}_{TM} \times \pmb{H}^{*}_{TM} \right\rgroup \pmb{\cdot } \pmb{a}_{z} dx dy} \right] + \frac{1}{2} Re \left[\int_{S}{\left\lgroup\pmb{E}_{TE} \times \pmb{H}^{*}_{TE} \right\rgroup \pmb{\cdot } \pmb{a}_{z} dx dy} \right]                                                                                                                                                         (10-109)

From (10-109), we see that there is no coupling between the two waves: the first term on the right-hand side of Eq.(10-109) is the total power of the TM_{mn} mode, while the second term is that of the TE_{mn} mode. Thus, the TM_{mn} and TE_{mn} waves are independent of each other in the waveguide.

Related Answered Questions

Question: 10.4

Verified Answer:

From Eq. (10-41) we write \boxed{E_{z}(x, y...