Holooly Plus Logo

Question 10.5: In a hollow rectangular waveguide with interior dimensions a......

In a hollow rectangular waveguide with interior dimensions a = 5[cm] and b = 2.5[cm] , an electromagnetic wave of frequency 8[GHz] propagates in the +z-direction. In the transverse plane at z = 0 , the magnetic field is given by

\pmb{H} = 4 \pmb{a}_{x} \sin (20 \pi x) \sin (60 \pi y) + 3 \pmb{a}_{y} \cos (20 \pi x) \cos (60 \pi y)  [A/m] with no z-component. Find

(a) TM modes of propagation,

(b) \alpha _{mn} for the evanescent mode with the lowest cutoff frequency, and

(c) magnetic field in the transverse plane at z = 1[m].

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) From Eq. (10-46), the cutoff frequencies are

\boxed{f_{c(mn)} = \frac{1}{2\sqrt{\mu ε} } \sqrt{\left\lgroup\frac{m}{a} \right\rgroup^{2} + \left\lgroup\frac{n}{b} \right\rgroup^{2} }}              [Hz]          (10-46)

f_{c(11)} = \frac{1}{2 \sqrt{\mu _{o} ε_{o}} } \sqrt{\left\lgroup\frac{1}{0.05} \right\rgroup^{2} + \left\lgroup\frac{1}{0.025} \right\rgroup ^{2} } = 6.7 [GHz] \\ f_{c(21)} = \frac{1}{2 \sqrt{\mu _{o} ε _{o}} } \sqrt{\left\lgroup\frac{2}{0.05} \right\rgroup^{2} + \left\lgroup\frac{1}{0.025} \right\rgroup ^{2} } = 8.5 [GHz] \\ f_{c(12)} = \frac{1}{2 \sqrt{\mu _{o} ε_{o}} } \sqrt{\left\lgroup\frac{1}{0.05} \right\rgroup^{2} + \left\lgroup\frac{2}{0.025} \right\rgroup ^{2} } = 12.4 [GHz]

The TM_{21}  and  TM_{12} modes are the evanescent modes in the waveguide operating at 8[GHz] .

(b) From Eq. (10-43), the attenuation constant for TM_{21} mode is

\boxed{\begin{matrix} \gamma = \pm \sqrt{h^{2} – k^{2}} = \pm j \sqrt{\omega ^{2}\mu ε – \left\lgroup\frac{m\pi }{a} \right\rgroup^{2} – \left\lgroup\frac{n\pi }{b} \right\rgroup^{2} } \\ \equiv \alpha _{mn} + j \beta _{mn} \end{matrix} }                      [m-1]           (10-43)
\alpha _{21} = \pi \sqrt{\left\lgroup\frac{2}{0.05} \right\rgroup^{2} + \left\lgroup\frac{1}{0.025} \right\rgroup^{2} – \left\lgroup\frac{2 \times 8 \times 10^{9}}{3 \times 10^{8}} \right\rgroup^{2}} = 59 [Np/m]

In view of the large value of \alpha _{21}, the evanescent wave can be neglected at the output end at z = 1[m] of the waveguide.

(c) We obtain \pmb{\bar{H} } _{11} from Eq. (10-62) as

\boxed{\pmb{\bar{H}}_{mn} = \left\lgroup\bar{H}_{x} \pmb{a}_{x} + \bar{H}_{y} \pmb{a}_{y} \right\rgroup e^{- j \beta _{mn}z} }                                                                                     (10-62a) \\ \boxed{\bar{H}_{x} = \frac{2j}{h\sqrt{ab} }\left\lgroup\frac{n\pi }{b} \right\rgroup \sin \left\lgroup \frac{m\pi }{a} \right\rgroup \cos \left\lgroup\frac{n\pi }{b} \right\rgroup }    (m,n = 1,2,3,… )   (10-62b) \\ \boxed{\bar{H}_{y} = – \frac{2j}{h\sqrt{ab} }\left\lgroup\frac{m\pi }{a} \right\rgroup \cos \left\lgroup \frac{m\pi }{a} \right\rgroup \sin \left\lgroup\frac{n\pi }{b} y\right\rgroup }         (m,n = 1,2,3,… )   (10-62c) \\   \\  \pmb{\bar{H} } _{11} = \frac{2 j}{h \sqrt{ab} } \left\lgroup\frac{\pi }{0.025} \right\rgroup \pmb{a}_{x} \sin (20 \pi x) \cos (40 \pi y) \\ \quad – \frac{2 j}{h \sqrt{ab} } \left\lgroup \frac{\pi }{0.05} \right\rgroup \pmb{a}_{y} \cos (20 \pi x) \sin (40 \pi y)

The magnitude of the TM_{11} mode contained in H is obtained as follows:

\int_{x = 0}^{x = 0.05} \int_{y =0}^{y = 0.25}{\pmb{H \cdot \bar{H} ^{*}_{11}}} dx dy \\ = – \frac{8 j}{h \sqrt{ab} } \left\lgroup\frac{\pi }{0.025} \right\rgroup \int_{x = 0}^{x = 0.05}{ \sin^{2} (20 \pi x)} dx \int_{y =0}^{y = 0.025}{\sin (60 \pi y) \cos (40 \pi y) dy } \\ \quad + \frac{6 j}{h \sqrt{ab} } \left\lgroup \frac{\pi }{0.05} \right\rgroup \int_{x = 0}^{x = 0.05}{\cos^{2} (20 \pi x) dx }\int_{y = 0}^{y = 0.025}{ \cos(60 \pi y) \sin (40 \pi y) dy} \\ = – \frac{0.3 j}{h\sqrt{ab} }            (10-63)

Multiplying Eq. (10-62) by the factor given by Eq. (10-63) we obtain

H_{x} = 3.06 \sin \left\lgroup\frac{\pi }{0.05}x \right\rgroup \cos \left\lgroup\frac{\pi }{0.025} y \right\rgroup                     [A/m]                (10-64a) \\ H_{y} = – 1.53 \cos \left\lgroup\frac{\pi }{0.05}x \right\rgroup \sin \left\lgroup\frac{\pi }{0.025} y \right\rgroup                  [A/m]              (10-64b)

From Eq. (10-48) we obtain the phase constant for the TM_{11} mode as

\boxed{\beta_{mn} = k \sqrt{1 – \left\lgroup \frac{f_{c(mn)}}{f} \right\rgroup ^{2} } }                    [rad/m]             (10-48)

\beta _{mn} = k \sqrt{1 – \left\lgroup\frac{f_{c(mn)}}{f} \right\rgroup^{2} } = \frac{2\pi \times 8\times 10^{9}}{3\times 10^{8}} \sqrt{1 – \left\lgroup \frac{6.7}{8} \right\rgroup ^{2}} = 91.6 [rad/m]           (10-65)

In the plane at z = 1[m], Eqs.(10-64) and (10-65) are combined together to write the magnetic field phasor, that is,

\pmb{H} = [H_{x}(x, y) \pmb{a}_{x} + H_{y}(x, y) \pmb{a}_{y} ]e^{- j 91.6}

Related Answered Questions

Question: 10.4

Verified Answer:

From Eq. (10-41) we write \boxed{E_{z}(x, y...