Holooly Plus Logo

Question 10.24: KNOWN: Operating conditions of apparatus used to determine s......

KNOWN: Operating conditions of apparatus used to determine surface boiling characteristics.

FIND: (a) Nucleate boiling coefficient for special coating, (b) Surface temperature as a function of heat flux; apparatus temperatures for a prescribed heat flux; applicability of nucleate boiling correlation for a specified heat flux.

ASSUMPTIONS: (1) One-dimensional, steady-state conduction in the bar, (2) Water is saturated at 1 atm, (3) Applicability of Rohsenow correlation with n = 1.

PROPERTIES: Table A.6, saturated water (100°C): ρ_{\ell} = 957.9 kg/m³, \mathrm c_{\mathrm p,\ell} = 4217 J/kg⋅K, μ_{\ell} = 279 × 10^{-6} N⋅s/m², \mathrm{Pr}_{\ell} = 1.76, \mathrm h_{\mathrm{fg}} = 2.257 × 10^6 J/kg, σ = 0.0589 N/m, ρ_{\mathrm v} = 0.5955 kg/m³.

SCHEMATIC:

10.24
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

ANALYSIS: (a) The coefficient \mathrm C_{\mathrm{s,f}} associated with Eq. 10.5 may be determined if \mathrm q_{\mathrm s}^{\prime\prime}~\text{and}~\mathrm T_{\mathrm s} are known. Applying Fourier’s law between \mathrm x_1~\text{and}~\mathrm x_2,

q _{ s }^{\prime \prime}= q _{\text {cond}}^{\prime \prime}= k \frac{ T _2 ~ – ~ T _1}{ x _2  ~-  ~x _1}=400  W / m \cdot K \times \frac{(158.6  ~- ~ 133.7)^{\circ} C }{0.015  m }=6.64 \times 10^5  W / m ^2

Since the temperature distribution in the bar is linear, \mathrm T_{\mathrm s} = \mathrm T_1  –  (\mathrm{dt/dx})\mathrm x_1 = \mathrm T_1  –  [(\mathrm T_2  –  \mathrm T_1)/(\mathrm x_2  –  \mathrm x_1)] \mathrm x_1. Hence,

T _{ s }=133.7^{\circ} C  -\left[24.9^{\circ} C / 0.015  m \right] 0.01  m =117.1^{\circ} C

From Eq. 10.5, with n = 1,

C _{ s , f }=\frac{ c _{ p , \ell} \Delta T _{ e }}{ h _{ fg } \operatorname{Pr}_{\ell}}\left\lgroup\frac{\mu_{\ell} h _{ fg }}{ q _{ s }^{\prime \prime}}\right\rgroup^{1 / 3}\left[\frac{ g \left(\rho_{\ell}~-~\rho_{ v }\right)}{\sigma}\right]^{1 / 6}

C _{ s, f } = \frac{4217  J / kg \cdot K \left(17.1^{\circ} C \right)}{2.257~ \times~ 10^6  J / kg (1.76)}\left\lgroup \frac{279~ \times~ 10^{-6}  kg / s \cdot m ~\times ~2.257 ~\times ~10^6  J / kg }{6.64~ \times~ 10^5  W / m ^2}\right\rgroup^{1 / 3}\left[\frac{9.8  m / s ^2~ \times~ 957.3  kg / m ^3}{0.0589  kg / s ^2}\right]^{1 / 6}

C _{ s, f } = 0.0131

(b) Using the appropriate IHT Correlations and Properties Toolpads, the following portion of the nucleate boiling regime was computed.

For \mathrm q_{\mathrm s}^{\prime\prime} = 10^6 W/m² = \mathrm q_{\text{cond}}^{\prime\prime}, \mathrm T_{\mathrm s} = 119.6°C and

T_1 = 144.6^{\circ}C~~~~~\text{and}~~~~~~T_2 = 182.1^{\circ}C

With the critical heat flux given by Eq. 10.7,

q _{\max}^{\prime \prime}=0.149 h _{ fg } \rho_{ v }\left[\frac{\sigma g \left(\rho_{\ell} ~ -~  \rho_{ v }\right)}{\rho_{ v }^2}\right]^{1 / 4}

q _{\max }^{\prime \prime} = 0.149\left(2.257 \times 10^6  J / kg \right) 0.5955  kg / m ^3\left[\frac{0.0589  kg / s ^2 ~\times~ 9.8  m / s ^2 ~\times~ 957.3  kg / m ^3}{\left(0.5955  kg / m ^3\right)^2}\right]^{1 / 4}

q _{\max}^{\prime \prime} = 1.25 \times 10^6  W/m^2

Since \mathrm q_{\mathrm s}^{\prime\prime} = 1.5 \times 10^6 W/m² > \mathrm q_{\max}^{\prime\prime}, the heat flux exceeds that associated with nucleate boiling and the foregoing results can not be used.

COMMENTS: For \mathrm q_{\mathrm s}^{\prime\prime} > \mathrm q_{\max}^{\prime\prime}, conditions correspond to film boiling, for which \mathrm T_{\mathrm s} may exceed acceptable operating conditions.

10.24b

Related Answered Questions