Holooly Plus Logo

Question 10.27: KNOWN: Steel bar upon removal from a furnace immersed in wat......

KNOWN: Steel bar upon removal from a furnace immersed in water bath.

FIND: Initial heat transfer rate from bar.

ASSUMPTIONS: (1) Uniform bar surface temperature, (2) Film pool boiling conditions.

PROPERTIES: Table A-6, Water, liquid (1 atm, \mathrm T_{\text{sat}} = 100°C): ρ_{\ell} = 957.9 kg/m³, \mathrm h_{\mathrm{fg}} = 2257 kJ/kg; Table A-6, Water, vapor (\mathrm T_{\mathrm f} = (\mathrm T_{\mathrm s} + \mathrm T_{\text{sat}})/2 = 550 K): ρ_{\mathrm v} = 31.55 kg/m³, \mathrm c_{\mathrm{p,v}} = 4640 J/kg·K, \mu_{\mathrm v} = 18.6 × 10^{-6} N·s/m², \mathrm k_{\mathrm v} = 0.0583 W/m·K.

SCHEMATIC:

10.27
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

ANALYSIS: The total heat transfer rate from the bar at the instant of time it is removed from the furnace and immersed in the water is

q _{ s }=\overline{ h } A _{ s }\left( T _{ s }  –  T _{ sat }\right)=\overline{ h } A _{ s } \Delta T _{ e }                                                                    (1)

where Δ\mathrm T_{\mathrm e} = 455 – 100 = 355 K. According to the boiling curve of Figure 10.4, with such a high Δ\mathrm T_{\mathrm e}, film pool boiling will occur. From Eq. 10.10,

\overline{ h }^{4 / 3}=\overline{ h }_{\text {conv }}^{4 / 3}+\overline{ h }_{ rad } \cdot \overline{ h }^{1 / 3} ~~\quad \text { or } \quad~~ \overline{ h }=\overline{ h }_{\text {conv }}+\frac{3}{4} \overline{ h }_{\text {rad }}\left(\text { if } h _{\text {conv}} > h _{ rad }\right).                              (2)

To estimate the convection coefficient, use Eq. 10.9,

\overline{ Nu }_{ D }=\frac{\overline{ h }_{\text {conv }} D }{ k _{ v }}= C \left[\frac{ g \left(\rho_{\ell}  ~- ~ \rho_{ v }\right) h _{ fg }^{\prime} D ^3}{\nu_{ v } k _{ v }  \Delta T _{ e }}\right]^{1 / 4}                                                            (3)

where C = 0.62 for the horizontal cylinder and \mathrm h_{\mathrm{fg}}^{\prime} = \mathrm h_{\mathrm{fg}} + 0.8 \mathrm c_{\mathrm{p,v}} (\mathrm T_{\mathrm s}  –  \mathrm T_{\text{sat}}). Find

\overline{ h }_{\text{conv}} = \frac{0.0583  W / m \cdot K }{0.020  m } 0.62\left[\frac{9.8  m / s ^2(957.9 ~ –  ~31.55) kg / m ^3\left[2257~ \times ~10^3~+~0.8~ \times~ 4640~ \times ~355\right] J / kg (0.020  m )^3}{\left(18.6 ~\times ~10^{-6}/ 31.55\right) m ^2 / s ~\times~ 0.0583  W / m \cdot K~ \times~ 355  K }\right]^{1 / 4}

\overline{ h }_{\text{conv}} = 690  W/m^2 \cdot K.

To estimate the radiation coefficient, use Eq. 10.11,

\overline{ h }_{\text{rad}}=\frac{\varepsilon \sigma\left( T _{ s }^4  ~-  ~T _{ sat }^4\right)}{ T _{ s }  ~-~  T _{ sat }}=\frac{0.9~ \times ~5.67 ~\times~ 10^{-8}  W / m ^2 \cdot K ^4\left(728^4~  – ~ 373^4\right) K ^4}{355  K }=37.6  W / m ^2 \cdot K.

Substituting numerical values into the simpler form of Eq. (2), find

\overline{ h }=(690 + (3/4) 37.6) W / m ^2 \cdot K =718  W/m ^2 \cdot K.

Using Eq. (1), the heat rate, with \mathrm A_{\mathrm s} = \pi  \mathrm D  \mathrm L, is

q _{ s }=718  W / m ^2 \cdot K (\pi \times 0.020  m \times 0.200  m ) \times 355  K =3.20  kW.

COMMENTS: For these conditions, the convection process dominates.

Related Answered Questions