Holooly Plus Logo

Question 8.1: Laplace transform of a noncausal exponential signal Find the......

Laplace transform of a noncausal exponential signal

Find the Laplace transform of x(t) = e^{−t} u(t) + e^{2t} u(−t).

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The Laplace transform of this sum is the sum of the Laplace transforms of the individual terms e^{−t} u(t) and e^{2t} u(−t). The ROC of the sum is the region in the s plane that is common to the two ROCs. From Table 8.1

e^{-t} \mathrm{u}(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+1}, \quad \sigma>-1

and

e^{2t} u(-t)\xleftrightarrow{\mathcal{L}}-\frac{1}{s-2}, σ<2.

In this case, the region in the s plane that is common to both ROCs is −1 < σ < 2 and

e^{−t} u(t) + e^{2t} u(-t)\xleftrightarrow{\mathcal{L}}\frac{1}{s+1}-\frac{1}{s-2}, −1 < σ < 2

(Figure 8.12). This Laplace transform has poles at s = −1 and s = +2 and two zeros at infinity.

Table 8.1 Some common Laplace-transform pairs
δ (t) \overset{\mathcal{L}}{\longleftrightarrow } 1 ,    \text{All}  σ
u (t) \overset{\mathcal{L}}{\longleftrightarrow } 1/s ,  σ > 0 – u (-t) \overset{\mathcal{L}}{\longleftrightarrow } 1/s^2 ,  σ < 0
\text{ramp}(t) = t  u (t) \overset{\mathcal{L}}{\longleftrightarrow } 1/s^2 ,  σ > 0 \text{ramp}(-t) = -t u (-t) \overset{\mathcal{L}}{\longleftrightarrow } 1/s^2 ,  σ < 0
e^{-αt}  u (t) \overset{\mathcal{L}}{\longleftrightarrow } 1/(s+ α),  σ > -α -e^{-αt}  u (-t) \overset{\mathcal{L}}{\longleftrightarrow } 1/(s+ α),  σ < -α
t^n  u (t) \overset{\mathcal{L}}{\longleftrightarrow }n!/s^{n+1},  σ > 0 -t^n  u (-t) \overset{\mathcal{L}}{\longleftrightarrow }n!/s^{n+1},  σ < 0
te^{-αt}  u (t) \overset{\mathcal{L}}{\longleftrightarrow } 1/(s+ α)^2,  σ > -α -te^{-αt}  u (-t) \overset{\mathcal{L}}{\longleftrightarrow } 1/(s+ α)^2,  σ < -α
t^n e^{-αt}  u (t) \overset{\mathcal{L}}{\longleftrightarrow } \frac{n!}{(s+ α)^{n+1}},  σ > -α -t^n e^{-αt}  u (-t) \overset{\mathcal{L}}{\longleftrightarrow } \frac{n!}{(s+ α)^{n+1}},  σ < -α
\sin (ω_0t)  u (t) \overset{\mathcal{L}}{\longleftrightarrow } \frac{ω_0}{s^2+ω_0^2},  σ > 0 -\sin (ω_0t)  u (-t) \overset{\mathcal{L}}{\longleftrightarrow } \frac{ω_0}{s^2+ω_0^2},  σ < 0
\cos (ω_0t)  u (t) \overset{\mathcal{L}}{\longleftrightarrow } \frac{s}{s^2+ω_0^2},  σ > 0 -\cos (ω_0t)  u (-t) \overset{\mathcal{L}}{\longleftrightarrow } \frac{s}{s^2+ω_0^2},  σ < 0
e^{-αt} \sin (ω_0t)  u (t) \overset{\mathcal{L}}{\longleftrightarrow } \frac{ω_0}{(s+α)^2+ω_0^2},  σ > -α -e^{-αt} \sin (ω_0t)  u (-t) \overset{\mathcal{L}}{\longleftrightarrow } \frac{ω_0}{(s+α)^2+ω_0^2},  σ < -α
e^{-αt} \cos (ω_0t)  u (t) \overset{\mathcal{L}}{\longleftrightarrow } \frac{s+α}{(s+α)^2+ω_0^2},  σ > -α -e^{-αt} \cos (ω_0t)  u (-t) \overset{\mathcal{L}}{\longleftrightarrow } \frac{s+α}{(s+α)^2+ω_0^2},  σ < -α
e^{-α|t|} \overset{\mathcal{L}}{\longleftrightarrow } \frac{1}{s+α}  –  \frac{1}{s-α}= –  \frac{2 α}{s^2-α^2},  -α < σ < α
التقاط

Related Answered Questions