Holooly Plus Logo

Question 8.8: Response of an LTI system Find the response y(t) of an LTI s......

Response of an LTI system

Find the response y(t) of an LTI system

(a) With impulse response h(t) = 5e^{-4t} u(t) if excited by x(t) = u(t)

(b) With impulse response h(t) = 5e^{-4t} u(t) if excited by x(t) = u(−t)

(c) With impulse response h(t) = 5e^{4t} u(−t) if excited by x(t) = u(t)

(d) With impulse response h(t) = 5e^{4t} u(−t) if excited by x(t) = u(−t)

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.
\begin{aligned}(a)  \mathrm{h}(t)=5 e^{-4 t} \mathrm{u}(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \mathrm{H}(s)=\frac{5}{s+4}, \sigma>-4 \\ \mathrm{x}(t)=\mathrm{u}(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \mathrm{X}(s)=1 / s, \sigma>0 \end{aligned}

Therefore

Y(s) = H(s) X(s)=\frac{5}{s(s+4)}, σ > 0

Y(s) can be expressed in the partial-fraction form

\begin{gathered} \mathrm{Y}(s)=\frac{5 / 4}{s}-\frac{5 / 4}{s+4}, \sigma>0 \\ \mathrm{y}(t)=(5 / 4)\left(1-e^{-4 t}\right) \mathrm{u}(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \mathrm{Y}(s)=\frac{5 / 4}{s}-\frac{5 / 4}{s+4}, \sigma>0 \end{gathered}

(Figure 8.15)

h(t) = 5e^{−4t} u(t), x(t) = u(t)     h(t) = 5e^{−4t} u(t), x(t) = u(−t)

 

h(t) = 5e^{4t} u(-t), x(t) = u(t)     h(t) = 5e^{4t} u(-t), x(t) = u(−t)

(b)  \mathrm{x}(t)=\mathrm{u}(-t) \stackrel{\mathcal{L}}{\longleftrightarrow} \mathrm{X}(s)=-1 / s, \sigma<0

\begin{aligned} & \mathrm{Y}(s)=\mathrm{H}(s) \mathrm{X}(s)=-\frac{5}{s(s+4)}, \quad-4<\sigma<0 \\ & \mathrm{Y}(s)=-\frac{5 / 4}{s}+\frac{5 / 4}{s+4}, \quad-4<\sigma<0 \\ & \mathrm{y}(t)=(5 / 4)\left[e^{-4 t} \mathrm{u}(t)+\mathrm{u}(-t)\right] \stackrel{\mathcal{L}}{\longleftrightarrow} \mathrm{Y}(s)=-\frac{5 / 4}{s}+\frac{5 / 4}{s+4}, \quad-4<\sigma<0 \\ & \end{aligned}

(Figure 8.15)

\begin{aligned} (c)  & \mathrm{h}(t)=5 e^{4 t} \mathrm{u}(-t) \stackrel{\mathcal{L}}{\longleftrightarrow} \mathrm{H}(s)=-\frac{5}{s-4}, \quad \sigma<4 \\  & \mathrm{Y}(s)=\mathrm{H}(s) \mathrm{X}(s)=-\frac{5}{s(s-4)}, \quad 0<\sigma<4 \\ & \mathrm{Y}(s)=\frac{5 / 4}{s}-\frac{5 / 4}{s-4}, \quad 0<\sigma<4 \\ & \mathrm{y}(t)=(5 / 4)\left[\mathrm{u}(t)+e^{4 t} \mathrm{u}(-t)\right] \stackrel{\mathcal{L}}{\longleftrightarrow} \mathrm{Y}(s)=\frac{5 / 4}{s}-\frac{5 / 4}{s+4}, \quad 0<\sigma<4 \end{aligned}

(Figure 8.15)

\begin{aligned} (d)  & \mathrm{Y}(s)=\mathrm{H}(s) \mathrm{X}(s)=\frac{5}{s(s-4)}, \quad \sigma<0 \\ & \mathrm{Y}(s)=-\frac{5 / 4}{s}+\frac{5 / 4}{s-4}, \quad \sigma<0 \\ & \mathrm{y}(t)=(5 / 4)\left[\mathrm{u}(-t)-e^{4 t} \mathrm{u}(-t)\right] \stackrel{\mathcal{L}}{\longleftrightarrow} \mathrm{Y}(s)=-\frac{5 / 4}{s}+\frac{5 / 4}{s-4}, \quad \sigma<4 \end{aligned}
1
1

Related Answered Questions

Question: 8.1

Verified Answer:

The Laplace transform of this sum is the sum of th...