Holooly Plus Logo

Question 14.3: Lithium Bromide Absorption Cycle A lithium bromide chiller o......

Lithium Bromide Absorption Cycle

A lithium bromide chiller operates between a condensing temperature of 104°F (40°C) and an evaporator temperature of 50°F (10°C). Heat is added to the generator at 212°F (100°C) and removed from the absorber at 86°F (30°C). If the pump flow rate is 4800 lbm/h (0.605 kg/s), what are the COP and the heat rates at each component of the cycle: generator, absorber, condenser, and evaporator?
Given: T_{gen} = 212°F, T_{con} = 104°F, T_{evap} = 50°F, T_{abs} = 86°F (italicized in Table 14.3) \dot{m}_{pump} = 4800 lb/h (0.61 kg/s)
Figure: See Figure 14.6.
Assumptions: All components operate at equilibrium. State points 4–5 are at liquid and vapor saturated conditions respectively. Ignore all pressure and heat losses in piping.
Find: \dot{Q}_{cond}, \dot{Q}_{evap}, \dot{Q}_{abs}, \dot{Q}_{gen}, COP

TABLE 14.3
Thermodynamic Properties for Example 14.3
State Temp., °F p, psia X h, Btu/lb_{m}
1 8.6 0.178 0.50 −71^{a}
2 212 1.070 0.67 −24^{a}
3 (superheated vapor) 212 1.070 0.0 1150.5^{b}
4 (saturated liquid) 104 1.070 0.0 72^{b}
5 (saturated vapor) 50 0.178 0.0 1083.3^{b}

a Read from Figure 14.7.

b Read from steam tables.

14.6
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The solution consists of, first, finding thermodynamic properties at all state points 1–5. Second, we use mass and energy balance equations to find the heat and mass flow terms.

The property table is completed as follows:
(a) First, the known temperatures in the second column are entered. The given temperatures within each component are assumed to be the temperatures of fluid streams exiting that component.
(b) Second, pressures are entered in the table. We refer to the saturated steam tables (Table A3) to determine the condenser and evaporator pressures p_{3} and p_{5} since the corresponding temperatures are specified. Consequently, the pressures at all state points are now known.
Note that pressures in the LiBr cycle are sub-atmospheric and small.
(c) Next, the LiBr mass fractions at points 1 and 2 can be deduced from Figure 14.7 as the intersection of the known pressure and temperature lines (the online HCB software can be used for more accurate determination). Of course, for states 3, 4, and 5 consisting of pure water vapor, the mass fraction is zero.
(d) Finally, from Figure 14.7 (or from the online HCB software), the enthalpies at points 1 and 2 are deduced. The enthalpies at points 3, 4, and 5 are easily  determined from the steam superheat and saturated tables (Tables A3 and A4).

At this point, a mass balance is written on the generator, and then each heat ow term can be found. The total mass balance and the LiBr mass balance written on the generator are

\dot{m}_{2} + \dot{m}_{3} = \dot{m}_{1} = 4800  lb_{m}/h      (14.16)

\dot{m}_{1} X_{1} = \dot{m}_{2} X_{2}         (14.17)

From these expressions, the two unknown mass flow rates can be found:

\dot{m}_{2} = \dot{m}_{1} \left\lgroup \frac{X_{1}}{X_{2}} \right\rgroup = 4800 \left\lgroup \frac{0.50}{0.67} \right\rgroup = 3582  lb_{m}/h            (14.18)

\dot{m}_{3} = \dot{m}_{1}  –  \dot{m}_{2} = 4800  –  3582 = 1218  lb/h = \dot{m}_{4} = \dot{m}_{5}     (14.19)

The four heat rate terms can now be found from energy balances on the four components of the AC cycle. The arrows in Figure 14.6 show the direction of the heat flow:

\dot{Q}_{gen} = \dot{m}_{3} h_{3} + \dot{m}_{2} h_{2}  –  \dot{m}_{1} h_{1} = 1218   \times  1150.5

+ 3582 × (-24)  –  4800 × (- 71) = 1656  kBtu/h          (14.20)

\dot{Q}_{cond} = \dot{m}_{3} (h_{3}  –  h_{4}) = 1218  \times (1150.5  –  72) = 1314  kBtu/h               (14.21)

\dot{Q}_{abs} = \dot{m}_{2} h_{2} + \dot{m}_{5} h_{5}  –  \dot{m}_{1} h_{1} = 3582  \times ( -24)

+ 1218 × (1083.3)  –   4800  × (- 71) = 1574  kBtu/h         (14.22)

\dot{Q}_{evap} = \dot{m}_{5}(h_{5}  –  h_{4}) = 1218  \times (1083.3  –  72) = 1232  kBtu/h

As a check, by the first law of thermodynamics, since pumping power is negligible,

\dot{Q}_{evap} = – \dot{Q}_{gen} + \dot{Q}_{abs} + \dot{Q}_{cond} = -1656 + 1574 + 1314

= 1232  kBtu/h

Finally, the COP, defined as the ratio of cooling produced in the evaporator to the heat added in the generator, is

COP = \frac{\dot{Q}_{evap}}{\dot{Q}_{gen}} = \frac{1232  kBtu/h}{1656  kBtu/h} = 0.74

Comments
The solution to AC cycle problems involves the use of two sets of thermodynamic tables or charts—those for pure water and those for LiBr. Although the reference states for various LiBr charts found in the literature may vary from those in Figure 14.7, the energy flows will be the same. Figure 14.7 has the advantage that all thermodynamic variables are included in a single LiBr chart rather than two charts, as in other references.
Although the COP of an absorption cycle is much lower than that for a VC cycle, remember that the heat input to a power plant that produces the electricity to power VC machines is about three times the power plant’s electric output.
Therefore, the ratio of cooling effect to thermal energy input (to the power source) is not much different for VC and AC cycles

TABLE A.3 (IP Units) Properties of Saturated Steam
Pressure (psia) Saturation Temp. (°F) Specific Volume
(ft³/lb_{m})
Internal Energy (Btu/lb_{m}) Enthalpy (Btu/lb_{m}) Entropy (Btu/(lb_{m} · °R))
Sat. Liquid Sat. Vapor Sat. Liquid Evap. Sat. Vapor Sat. Liquid Evap. Sat. Vapor Sat. Liquid Evap. Sat. Vapor
p Tsat vf vg uf ufg ug hf hfg hg sf sfg sg
0.08866 32.02 0.016022 3302 0.00 1021.2 1021.2 0.01 1075.4 1075.4 0.00000 2.1869 2.1869
0.09992 35.00 0.016021 2948 2.99 1019.2 1022.2 3.00 1073.7 1076.7 0.00607 2.1704 2.1764
0.12166 40.00 0.016020 2445 8.02 1015.8 1023.9 8.02 1070.9 1078.9 0.01617 2.1430 2.1592
0.14748 45.00 0.016021 2037 13.04 1012.5 1025.5 13.04 1068.1 1081.1 0.02618 2.1162 2.1423
0.17803 50.00 0.016024 1704.2 18.06 1009.1 1027.2 18.06 1065.2 1083.3 0.03607 2.0899 2.1259
0.2563 60.00 0.016035 1206.9 28.08 1002.4 1030.4 28.08 1059.6 1087.7 0.05555 2.0388 2.0943
0.3632 70.00 0.016051 867.7 38.09 995.6 1033.7 38.09 1054.0 1092.0 0.07463 1.9896 2.0642
0.5073 80.00 0.016073 632.8 48.08 988.9 1037.0 48.09 1048.3 1096.4 0.09332 1.9423 2.0356
0.6988 90.00 0.016099 467.7 58.07 982.2 1040.2 58.07 1042.7 1100.7 0.11165 1.8966 2.0083
0.9503 100.00 0.016130 350.0 68.04 975.4 1043.5 68.05 1037.0 1105.0 0.12963 1.8526 1.9822
1 101.70 0.016136 333.6 69.74 974.3 1044.0 69.74 1036.0 1105.8 0.13266 1.8453 1.9779
2 126.04 0.016230 173.75 94.02 957.8 1051.8 94.02 1022.1 1116.1 0.17499 1.7448 1.9198
3 141.43 0.016300 118.72 109.38 947.2 1056.6 109.39 1013.1 1122.5 0.20089 1.6852 1.8861
4 152.93 0.016358 90.64 120.88 939.3 1060.2 120.89 1006.4 1127.3 0.21983 1.6426 1.8624
5 162.21 0.016407 73.53 130.15 932.9 1063.0 130.17 1000.9 1131.0 0.23486 1.6093 1.8441
6 170.03 0.016451 61.98 137.98 927.4 1065.4 138.00 996.2 1134.2 0.24736 1.5819 1.8292
8 192.84 0.016526 47.35 150.81 918.4 1069.2 150.84 988.4 1139.3 0.26754 1.5383 1.8058
10 193.19 0.016590 38.42 161.20 911.0 1072.2 161.23 982.1 1143.3 0.28358 1.5041 1.7877
14.696 211.99 0.016715 26.80 180.10 897.5 1077.6 180.15 970.4 1150.5 0.31212 1.4446 1.7567
15 213.03 0.016723 26.29 181.14 896.8 1077.9 181.19 969.7 1150.9 0.31367 1.4414 1.7551
20 227.96 0.016830 20.09 196.19 885.8 1082.0 196.26 960.1 1156.4 0.33580 1.3962 1.7320
25 240.08 0.016922 16.306 208.44 876.9 1085.3 208.52 952.2 1160.7 0.35345 1.3607 1.7142
30 250.34 0.017004 13.748 218.84 869.2 1088.0 218.93 945.4 1164.3 0.36821 1.3314 1.6996
35 259.30 0.017073 11.900 227.93 862.4 1090.3 228.04 939.3 1167.4 0.38093 1.3064 1.6873
40 267.26 0.017146 10.501 236.03 856.2 1092.3 236.16 933.8 1170.0 0.39214 1.2845 1.6767
45 274.46 0.017209 9.403 243.37 850.7 1094.0 243.51 928.8 1172.3 0.40218 1.2651 1.6673
50 281.03 0.017269 8.518 250.08 845.5 1095.6 250.24 924.2 1174.4 0.41129 1.2476 1.6589
55 287.10 0.017325 7.789 256.28 840.8 1097.0 256.46 919.9 1176.3 0.41963 1.2317 1.6513
60 292.73 0.017378 7.177 262.06 836.3 1098.3 262.25 915.8 1178.0 0.42733 1.2170 1.6444
65 298.00 0.017429 6.657 267.46 832.1 1099.5 267.67 911.9 1179.6 0.43450 1.2035 1.6380
70 302.96 0.017478 6.209 272.56 828.1 1100.6 272.79 908.3 1181.0 0.44120 1.1909 1.6321
75 307.63 0.017524 5.818 277.37 824.3 1101.6 277.61 904.8 1182.4 0.44749 1.1790 1.6265
80 312.07 0.017570 5.474 281.95 820.6 1102.6 282.21 901.4 1183.6 0.45344 1.1679 1.6214
85 316.29 0.017613 5.17 286.3 817.1 1103.5 286.58 898.2 1184.8 0.45907 1.1574 1.6165
90 320.31 0.017655 4.898 290.46 813.8 1104.3 290.76 895.1 1185.9 0.46442 1.1475 1.6119
95 324.16 0.017696 4.654 294.45 810.6 1105.0 294.76 892.1 1186.9 0.46952 1.1380 1.6076
100 327.86 0.017736 4.434 298.28 807.5 1105.8 298.61 889.2 1187.8 0.47439 1.1290 1.6034
110 334.82 0.017813 4.051 305.52 801.6 1107.1 305.88 883.7 1189.6 0.48355 1.1122 1.5957
120 341.30 0.017886 3.73 312.27 796 1108.3 312.67 878.5 1191.1 0.49201 1.0966 1.5886
130 347.37 0.017957 3.457 318.61 790.7 1109.4 319.04 873.5 1192.5 0.49989 1.0822 1.5821
140 353.08 0.018024 3.221 324.58 785.7 1110.3 325.05 868.7 1193.8 0.50727 1.0688 1.5761
150 358.48 0.018089 3.016 330.24 781 1111.2 330.75 864.2 1194.9 0.51422 1.0562 1.5704
0.6113 0.01 0.001 206.14 0 2375.3 2375.3 0.01 2501.3 2501.4 0 9.1562 9.1562
1.0 6.98 0.001 129.21 29.30 2355.7 2385.0 29.30 2484.9 2514.2 0.1059 8.8697 8.9756
1.5 13.03 0.001001 87.98 54.71 2338.6 2393.3 54.71 2470.6 2525.3 0.1957 8.6322 8.8279
2.0 17.50 0.001001 67.00 73.48 2326.0 2399.5 73.48 2460.0 2533.5 0.2607 8.4629 8.7237
2.5 21.08 0.001002 54.25 88.48 2315.9 2404.4 88.49 2451.6 2540.4 0.3120 8.3311 8.6432
3.0 24.08 0.001003 45.67 101.04 2307.5 2408.5 101.05 2444.5 2545.5 0.3545 8.2231 8.5776
4.0 28.96 0.001004 34.80 121.45 2293.7 2415.2 121.46 2432.9 2554.4 0.4226 8.0520 8.4746
5.0 32.88 0.001005 28.19 137.81 2282.7 2420.5 137.82 2423.7 2561.5 0.4764 7.9187 8.3951
7.5 40.29 0.001008 19.24 168.78 2261.7 2430.5 168.79 2406.0 2574.8 0.5764 7.6750 8.2515
10 45.81 0.001010 14.67 191.82 2246.1 2437.9 191.83 2392.8 2584.7 0.6493 7.5009 8.1502
15 53.97 0.001014 10.02 225.92 2222.8 2448.7 225.94 2373.1 2599.1 0.7549 7.2536 8.0085
20 60.06 0.001017 7.649 251.38 2205.4 2456.7 251.40 2358.3 2609.7 0.8320 7.0766 7.9085
25 64.97 0.001020 6.204 271.90 2191.2 2463.1 271.93 2346.3 2618.2 0.8931 6.9383 7.8314
30 69.10 0.001022 5.229 289.20 2179.2 2468.4 289.23 2336.1 2625.3 0.9439 6.8247 7.7686
40 75.87 0.001027 3.993 317.53 2159.5 2477.0 317.58 2319.2 2636.8 1.0259 6.6441 7.6700
50 81.33 0.001030 3.240 340.44 2143.4 2483.9 340.49 2305.4 2645.9 1.0910 6.5029 7.5939
75 91.78 0.001037 2.217 384.31 2112.4 2496.7 384.39 2278.6 2663.0 1.2130 6.2434 7.4564
100 99.63 0.001043 1.6940 417.36 2088.7 2506.1 417.46 2258.0 2675.5 1.3026 6.0568 7.3594
125 105.99 0.001048 1.3749 444.19 2069.3 2513.5 444.32 2241.0 2685.4 1.3740 5.9104 7.2844
150 111.37 0.001053 1.1593 466.94 2052.7 2519.7 467.11 2226.5 2693.6 1.4336 5.7897 7.2233
175 116.06 0.001057 1.0036 486.8 2038.1 2524.9 486.99 2213.6 2700.6 1.4849 5.6868 7.1717
200 120.23 0.001061 0.8857 504.49 2025.0 2529.5 504.70 2201.9 2706.7 1.5301 5.5970 7.1271
225 124 0.001064 0.7933 520.47 2013.1 2533.6 520.72 2191.3 2712.1 1.5706 5.5173 7.0878
250 127.44 0.001067 0.7187 535.10 2002.1 2537.2 535.37 2181.5 2716.9 1.6072 5.4455 7.0527
275 130.6 0.001070 0.6573 548.59 1991.9 2540.5 548.89 2172.4 2721.3 1.6408 5.3801 7.0209
300 133.55 0.001073 0.6058 561.15 1982.4 2543.6 561.47 2163.8 2725.3 1.6718 5.3201 6.9919
325 136.3 0.001076 0.5620 572.90 1973.5 2546.4 573.25 2155.8 2729.0 1.7006 5.2646 6.9652
350 138.88 0.001079 0.5243 583.95 1965.0 2548.9 584.33 2148.1 2732.4 1.7275 5.2130 6.9405
375 141.32 0.001081 0.4914 594.40 1956.9 2551.3 594.81 2140.8 2735.6 1.7528 5.1647 6.9175
400 143.63 0.001084 0.4625 604.31 1949.3 2553.6 604.74 2133.8 2738.6 1.7766 5.1193 6.8959
450 147.93 0.001088 0.4140 622.77 1934.9 2557.6 623.25 2120.7 2743.9 1.8207 5.0359 6.8565
500 151.86 0.001093 0.3749 639.68 1921.6 2561.2 640.23 2108.5 2748.7 1.8607 4.9606 6.8213
550 155.48 0.001097 0.3427 655.32 1909.2 2564.5 655.93 2097.0 2753.0 1.8973 4.8920 6.7893
600 158.85 0.001101 0.3157 669.90 1897.5 2567.4 670.56 2086.3 2756.8 1.9312 4.8288 6.7600
650 162.01 0.001104 0.2927 683.56 1886.5 2570.1 684.28 2076.0 2760.3 1.9627 4.7703 6.7331
700 164.97 0.001108 0.2729 696.44 1876.1 2572.5 697.22 2066.3 2763.5 1.9922 4.7158 6.7080
750 167.78 0.001112 0.2556 708.64 1866.1 2574.7 709.47 2057.0 2766.4 2.0200 4.6647 6.6847
800 170.43 0.001115 0.2404 720.22 1856.6 2576.8 721.11 2048.0 2769.1 2.0462 4.6166 6.6628
850 172.96 0.001118 0.2270 731.27 1847.4 2578.7 732.22 2039.4 2771.6 2.0710 4.5711 6.6421
900 175.38 0.001121 0.2150 741.83 1838.6 2580.5 742.83 2031.1 2773.9 2.0946 4.5280 6.6226
950 177.69 0.001124 0.2042 751.95 1830.2 2582.1 753.02 2023.1 2776.1 2.1172 4.4869 6.6041
1000 179.91 0.001127 0.19444 761.68 1822.0 2583.6 762.81 2015.3 2778.1 2.1387 4.4478 6.5865
1100 184.09 0.001133 0.17753 780.09 1806.3 2586.4 781.34 2000.4 2781.7 2.1792 4.3744 6.5536
1200 187.99 0.001139 0.16333 797.29 1791.5 2588.8 798.65 1986.2 2784.8 2.2166 4.3067 6.5233
1300 191.64 0.001144 0.15125 813.44 1777.5 2591.0 814.93 1972.7 2787.6 2.2515 4.2438 6.4953
Source:    Courtesy  of ASHRAE,  Handbook  of  Fundamentals, American  Society  of  Heating,  Refrigerating  and Air-Conditioning  Engineers, Atlanta, GA, 1997. With permission.

 

TABLE A.4
(IP Units) Properties of Superheated Steam
Pressure (psia) Temperature (°F) v (ft3/lbm) u (Btu/lbm) h (Btu/lbm) s (Btu/lbm · °R)
1.0 Sat. 333.6 1044.0 1105.8 1.9779
(101.70°F) 200 392.5 1077.5 1150.1 2.0508
240 416.4 1091.2 1168.3 2.0775
280 440.3 1105.0 1186.5 2.1028
320 464.2 1118.9 1204.8 2.1269
360 488.1 1132.9 1223.2 2.1500
400 511.9 1147.0 1241.8 2.1720
440 535.8 1161.2 1260.4 2.1932
500 571.5 1182.8 1288.5 2.2235
600 631.1 1219.3 1336.1 2.2706
700 690.7 1256.7 1384.5 2.3142
800 750.3 1294.9 1433.7 2.3550
1000 869.5 1373.9 1534.8 2.4294
1200 988.6 1456.7 1639.6 2.4967
1400 1107.7 1543.1 1748.1 2.5584
5 Sat. 73.53 1063.0 1131.0 1.8441
(162.21°F) 200 78.15 1076.3 1148.6 1.8715
240 83.00 1090.3 1167.1 1.8987
280 81.83 1104.3 1185.5 1.9244
320 92.64 1118.3 1204.0 1.9487
360 97.45 1132.4 1222.6 1.9719
400 102.24 1146.6 1241.2 1.9941
440 107.03 1160.9 1259.9 2.0154
500 114.20 1182.5 1288.2 2.0458
600 126.15 1219.1 1335.8 2.0930
700 138.08 1256.5 1384.3 2.1367
800 150.01 1294.7 1433.5 2.1775
1000 173.86 1373.9 1534.7 2.2520
1200 197.70 1456.6 1639.5 2.3192
1400 221.54 1543.1 1748.1 2.3810
14.696 Sat. 26.80 1077.6 1150.5 1.7567
(211.99°F) 240 28.00 1087.9 1164.0 1.7764
280 29.69 1102.4 1183.1 1.8030
320 31.36 1116.8 1202.1 1.8280
360 33.02 1131.2 1221.0 1.8516
400 34.67 1145.6 1239.9 1.8741
440 36.31 1160.1 1258.8 1.8956
500 38.77 1181.8 1287.3 1.9263
600 42.86 1218.6 1335.2 1.9737
700 46.93 1256.1 1383.8 2.0175
800 51.00 1294.4 1433.1 2.0584
1000 59.13 1373.7 1534.5 2.1330
1200 67.25 1456.5 1639.3 2.2003
1400 75.36 1543.0 1747.9 2.2621
1600 83.47 1633.2 1860.2 2.3194
20 Sat. 20.09 1082.0 1156.4 1.7320
(227.96°F) 240 20.47 1086.5 1162.3 1.7405
280 21.73 1101.4 1181.8 1.7676
320 22.98 1116.0 1201.0 1.7930
360 24.21 1130.6 1220.1 1.8168
400 25.43 1145.1 1239.2 1.8395
440 26.64 1159.6 1258.2 1.8611
500 28.46 1181.5 1286.8 1.8919
600 31.47 1218.4 1334.8 1.9395
700 34.47 1255.9 1383.5 1.9834
800 37.46 1294.3 1432.9 2.0243
1000 43.44 1373.5 1534.3 2.0989
1200 49.41 1456.4 1639.2 2.1663
1400 55.37 1542.9 1747.9 2.2281
1600 61.33 1633.2 1860.1 2.2854
Source:    Courtesy  of  ASHRAE,  Handbook  of  Fundamentals,  American  Society  of  Heating,  Refrigerating  and  Air- Conditioning Engineers, Atlanta, GA, 1997. With permission.

 

TABLE A.4
(SI Units) Properties of Superheated Steam
Pressure (MPa) Temperature (°C) v (m3/kg) u (kJ/kg) h (kJ/kg) s (kJ/kg · K)
0.01 Sat. 14.674 2437.9 2584.7 8.1502
50 14.869 2443.9 2592.6 8.1749
100 17.196 2515.5 2687.5 8.4479
150 19.512 2587.9 2783.0 8.6882
200 21.825 2661.3 2879.5 8.9038
250 24.136 2736.0 2977.3 9.1002
300 26.445 2812.1 3076.5 9.2813
400 31.063 2968.9 3279.6 9.6077
500 35.679 3132.3 3489.1 9.8978
600 40.295 3302.5 3705.4 10.1608
700 44.911 3479.6 3928.7 10.4028
800 49.526 3663.8 4159.0 10.6281
900 54.141 3855.0 4396.4 10.8396
1000 58.757 4053.0 4640.6 11.0393
1100 63.372 4257.5 4891.2 11.2287
1200 67.987 4467.9 5147.8 11.4091
1300 72.602 4683.7 5409.7 11.5811
0.05 Sat. 3.240 2483.9 2645.9 7.5939
100 3.418 2511.6 2682.5 7.6947
150 3.889 2585.6 2780.1 7.9401
200 4.356 2659.9 2877.7 8.1580
250 4.820 2735.0 2976.0 8.3556
300 5.284 2811.3 3075.5 8.5373
400 6.209 2968.5 3278.9 8.8642
500 7.134 3132.0 3488.7 9.1546
600 8.057 3302.2 3705.1 9.4178
700 8.981 3479.4 3928.5 9.6599
800 9.904 3663.6 4158.9 9.8852
900 10.828 3854.9 4396.3 10.0967
1000 11.751 4052.9 4640.5 10.2964
1100 12.674 4257.4 4891.1 10.4859
1200 13.597 4467.8 5147.7 10.6662
1300 14.521 4683.6 5409.6 10.8382
0.2 Sat. 0.8857 2529.5 2706.7 7.1272
150 0.9596 2576.9 2768.8 7.2795
200 1.0803 2654.4 2870.5 7.5066
250 1.1988 2731.2 2971.0 7.7086
300 1.3162 2808.6 3071.8 7.8926
400 1.5493 2966.7 3276.6 8.2218
500 1.7814 3130.8 3487.1 8.5133
600 2.013 3301.4 3704.0 8.7770
700 2.244 3478.8 3927.6 9.0194
800 2.475 3663.1 4158.2 9.2449
900 2.705 3854.5 4395.8 9.4566
1000 2.937 4052.5 4640.0 9.6563
1100 3.168 4257.0 4890.7 9.8458
1200 3.399 4467.5 5147.5 10.0262
1300 3.630 4683.2 5409.3 10.1982
0.3 Sat. 0.6058 2543.6 2725.3 6.9919
150 0.6339 2570.8 2761.0 7.0778
200 0.7163 2650.7 2865.6 7.3115
250 0.7964 2728.7 2967.6 7.5166
300 0.8753 2806.7 3069.3 7.7022
400 1.0315 2965.6 3275.0 8.0330
500 1.1867 3130.0 3486.0 8.3251
600 1.3414 3300.8 3703.2 8.5892
700 1.4957 3478.4 3927.1 8.8319
800 1.6499 3662.9 4157.8 9.0576
900 1.8041 3854.2 4395.4 9.2692
1000 1.9581 4052.3 4639.7 9.4690
1100 2.1121 4256.8 4890.4 9.6585
1200 2.2661 4467.2 5147.1 9.8389
1300 2.4201 4683.0 5409.0 10.0110
Source:    Courtesy  of  ASHRAE,  Handbook  of  Fundamentals,  American  Society  of  Heating,  Refrigerating  and Air-Conditioning Engineers, Atlanta, GA, 1997. With permission.
14.7

Related Answered Questions