Holooly Plus Logo

Question 16.SP.4: Refer to Fig. 16.1. Water is delivered from a reservoir thro......

Refer to Fig. 16.1. Water is delivered from a reservoir through a 4-ft-diameter pipe (f=0.025)10,000ft long to a nozzle that emits an 8-in-diameter jet that impinges on an impulse wheel. The surface of the reservoir is at an elevation 2420 ft higher than the nozzle. The impulse wheel is connected to a 20-pole generator in a 60-cycle system. The wheel has a diameter of 106 in and a bucket angle  \beta_2​=165°. Assuming the head loss through the nozzle can be expressed as  0.05Vj2​/2g, where Vj  is the jet velocity, find the following: velocity of flow in the pipe, jet velocity, flow rate, speed of the bucket value of  u/V1​, net head, force  F on the bucket, torque on the wheel, shaft horsepower, horsepower at the base of the nozzle, and overall turbine efficiency Assume  v2​=v1​, neglect minor losses, bearing friction, and windage.

16.1
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Energy equation from surface of reservoir to jet neglecting minor loss at pipe entrance:

2420-0.025 \frac{10,000}{4} \frac{V^{2}}{2 g}-0.05 \frac{V_{j}^{2}}{2 g}=\frac{V_{j}^{2}}{2 g}

Continuity:           V_{j}=(48 / 8)^{2} V, \quad V_{j}=36 \mathrm{~V}

\begin{aligned}& 2420-62.5 \frac{V^{2}}{2 g}-0.05 \frac{(36 V)^{2}}{2 g}=\frac{(36 V)^{2}}{2 g} \\\\& 2420=\frac{V^{2}}{2 g}(62.5+64.8+1296)=\frac{V^{2}}{2 g}(1423.3)\end{aligned}

V=\sqrt{2 g(2420 / 1423)}=10.47 \mathrm{ft} / \mathrm{sec}, velocity in the pipe.

V_{j}=36(10.47)=377 \mathrm{ft} / \mathrm{sec}

\begin{aligned}& Q=A V=\pi 2^{2}(10.47)=131.5 \mathrm{cfs} \end{aligned}

\begin{gathered}N=7200 / n \text { gives } n=7200 / N=7200 / 20=360 \mathrm{rpm} \\\\\omega=\frac{2 \pi n}{60}=\frac{6.28(360)}{60}=37.7 \mathrm{rad} / \mathrm{sec} \\\\u=\omega r=37.7\left(\frac{106 / 2}{12}\right)=166.5 \mathrm{ft} / \mathrm{sec} \end{gathered}

Hence:      u / V_1=166.5 / 377=0.44

Eq. (16.5) for net head:

\begin{aligned}h & =\frac{p_{B}}{\gamma}+\frac{V_{B}^{2}}{2 g}=Y-h_{L}=2420-f \frac{L}{D} \frac{V^{2}}{2 g} \\\\& =2420-62.5 \frac{10.47^{2}}{2(32.2)}=2314 \mathrm{ft} \end{aligned}

Force on bucket

\begin{aligned}F & =p Q\left(V_{1}-u\right)(1-\cos \beta) ; \quad \beta=165^{\circ}, \quad \cos \beta=-0.966 \\\\& =1.94(131.5)(377-166.5)(1+0.966)=105,600 \mathrm{lb} \end{aligned}

Torque on wheel

T=F r=105,600(53 / 12)=466,300 \mathrm{ft} \cdot \mathrm{lb}

Shaft power            \quad P=\frac{T \omega}{550}=\frac{466,300(37.7)}{550}=31,960 \mathrm{hp}

Power at base of nozzle (i.e., power input to entire turbine, including nozzle)

P=\frac{\gamma Q h}{550}=\frac{62.4(131.5) 2314}{550}=34,520 \mathrm{hp}

Overall efficiency

\eta=\frac{\text { Output (or shaft) power }}{\text { Input power }}=\frac{T \omega}{\gamma Q h}=\frac{31,960}{34,520}=0.926=92.6 \%

h=\frac{p_B}{\gamma}+\frac{V_B^2}{2 g}=Y-h_L          (16.5)

Related Answered Questions