Holooly Plus Logo

Question 6.17: System analysis using the CTFT A system described by the dif......

System analysis using the CTFT

A system described by the differential equation \mathbf{y}^{\prime}(t)+1000\mathbf{y}(t)=1000\mathbf{x}(t) is excited by  x(t)=4\operatorname{rect}(200t)*\delta_{0.01}(t).  Find and graph the response y(t) .

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

From Example 6.16,

Y(f){\overset{f=\omega/2\pi}{\longrightarrow}}Y(j\omega)={\frac{1000\,\mathrm{X}(j\omega)}{j\omega+1000}}.

The CTFT ( f form) of the excitation is {X}(f)=0.02sinc(f/200)\delta_{100}(f) implying that  {\sf X}(j\omega)=0.02sinc(\omega/400\pi)\delta_{100}(\omega/2\pi). Using the scaling property of the periodic impulse,

\mathrm{X}(j\omega)=0.02\mathrm{sinc}(\omega/400\pi)\times2\pi\delta_{200\pi}(\omega)=0.04\pi\mathrm{sinc}(\omega/400\pi)\delta_{200\pi}(\omega)

Therefore the CTFT of the response is

Y(j\omega)={\frac{4000\pi\mathrm{sinc}(\omega/400\pi)\mathrm{\delta}_{200 \pi}(\omega)}{j\omega+1000}}

or, using the defi nition of the periodic impulse,

Y(j\omega)=4000\pi\sum_{k=-\infty}^{\infty}{\frac{\mathrm{sinc}(\omega/400\pi)\delta(\omega-200\pi k)}{j\omega+1000}}.

Now, using the equivalence property of the impulse,

Y(j\omega)=4000\pi\sum_{k=-\infty}^{\infty}\frac{\mathrm{sinc}(k/2)\delta(\omega-200\pi k)}{j200\pi k+1000}

and the inverse CTFT yields the response

y(t)=2000\sum_{k=-\infty}^{\infty}{\frac{\mathrm{sinc}(k/2)}{j200\pi k+100}}e^{j200\pi k t}.

If we separate the k = 0 term and pair each k and −k this result can be written as

\mathrm{y}(t)=2+\sum_{k=1}^{\infty}{\frac{\mathrm{sinc}(k/2)}{{j200\pi k+100}}}e^{j{{2}}00\pi k t}+{\frac{\mathrm{sinc}(-k/2)}{-j200\pi k+1000}}e^{-j200\pi k t}\,.

Using the fact that the sinc function is even and combining the terms over one common denominator,

y(t)=2+\sum_{k=1}^{\infty}\mathrm{sinc}(k/2)\frac{(-j200\pi k+1000)e^{j200\pi k t}+(j200\pi k+1000)e^{-j200\pi k t}}{(200\pi k)^{2}+(1000)^{2}}

y(t)=2+\sum_{k=1}^{\infty}sinc(k/2){\frac{2000\cos(200\pi k t)+400\pi k\sin(200\pi k t)}{(200\pi k)^{2}+(1000)^{2}}}

\mathbf{y}(t)=2+\sum_{k=1}^{\infty}\operatorname{sinc}(k/2){\frac{5\cos(200\pi k t)+\pi k\sin(200\pi k t)}{25+(\pi k)^{2}}}

The response is a constant plus a linear combination of real cosines and sines at integer multiples of 100 Hz (Figure 6.37 and Figure 6.38).

6.37
6.38

Related Answered Questions

Question: 6.9

Verified Answer:

This is the product of two functions. Therefore, u...
Question: 6.13

Verified Answer:

We can find the CTFT of the unit rectangle functio...
Question: 6.14

Verified Answer:

Method 1: Do the convolution first and find the CT...
Question: 6.11

Verified Answer:

Ordinarily we would try to directly integrate the ...