Holooly Plus Logo

Question 6.16: System analysis using the CTFT A system described by the dif......

System analysis using the CTFT

A system described by the differential equation \mathbf{y}^{\prime}(t)+\mathrm{{1000y}}(t)=\mathrm{{1000x}}(t) is excited by  x(t)=4{\mathrm{rect}}(200t). Find and graph the response y(t).

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

If we Fourier transform the differential equation we get

{j2}\pi f{{Y}}(f)+1000\,\mathrm{Y}(f)=1000\,\mathrm{X}(f)

which can be rearranged into

\mathbf{Y}(f)={\frac{1000\,{X}(f)}{j2\pi f+1000}}.

The CTFT of the excitation is \mathrm{X}(f)=0.02sinc(f/200). Therefore the CTFT of the response is

Y(f)=\frac{20sinc( f/200)}{j2\pi f+1000}

or, using the definition of the sinc function and the exponential definition of the sine function,

Y(f)=20\frac{\sin(\pi f/200)}{(\pi f/200)\left(j2\pi f+1000\right)}=4000\frac{e^{j2\pi f/400}-e^{-j2\pi f/400}}{j2\pi f(j2\pi f+1000)}.

To find the inverse CTFT, start with the CTFT pair e^{-\alpha t}\,{\mathbf{u}}(t){\boldsymbol{}}\overset{\mathcal F }{\longleftrightarrow } 1/(j2\pi f+\alpha),\ \alpha\gt 0,

e^{-1000t}\,{\bf u}(t)\overset{\mathcal F}{\longleftrightarrow } \frac{1}{j2\pi f+1000}.

Next use the integration property,

\int\limits_{-\infty}^{t}{g}(\lambda)d\lambda\overset{\mathcal F}{\longleftrightarrow } {\frac{G(f)}{j2\pi f}}+(1/2){\mathrm{G}}(0)\delta(f).

\int\limits_{-\infty }^{t}{e^{-1000\lambda } } u(\lambda )d(\lambda )\overset{\mathcal F}{\longleftrightarrow } \frac{1}{j2\pi f} \frac{1}{j2\pi f +1000}+\frac{1}{2000} \delta (f)

Then apply the time-shifting property,

{g}(t-t_{0})\overset{\mathcal F}{\longleftrightarrow } {G}(f)e^{-j2\pi ft_{0}}.

\int\limits_{0}^{t+1/400}{e^{-1000\lambda } }d\lambda \overset{\mathcal F}{\longleftrightarrow } \frac{1}{j2\pi f} \frac{e^{j2\pi f/400} }{j2\pi f+1000} +\underbrace{\frac{e^{j2\pi f/400} }{2000} \delta (f)}_{=\delta(f)/2000}

\int\limits_{0}^{t-1/400}{e^{-1000\lambda } }d\lambda \overset{\mathcal F}{\longleftrightarrow } \frac{1}{j2\pi f} \frac{e^{-j2\pi f/400} }{j2\pi f+1000} +\underbrace{\frac{e^{-j2\pi f/400} }{2000} \delta (f)}_{=\delta(f)/2000}

Subtracting the second result from the first and multiplying through by 4000

4000\int\limits_{-\infty }^{t+1/400}{e^{-1000\lambda } } u(\lambda )d\lambda -4000\int\limits_{-\infty }^{t-1/400}{x^{-1000\lambda } } u(\lambda )d\lambda \overset{\mathcal F}{\longleftrightarrow } \frac{4000}{j2\pi f} \frac{e^{j2\pi f/400}-e^{-j2\pi f/400} }{j2\pi f+1000}

4000\left[\int\limits_{-\infty }^{t+1/400}{e^{-1000\lambda } } u(\lambda )d\lambda -\int\limits_{-\infty }^{t-1/400}{x^{-1000\lambda } } u(\lambda )d\lambda\right] \overset{\mathcal F}{\longleftrightarrow } \frac{4000}{j2\pi f} \frac{e^{j2\pi f/400}-e^{-j2\pi f/400} }{j2\pi f+1000}

The two integral expressions can be simplified as follows.

\int\limits_{-\infty }^{t+1/400}{e^{-1000\lambda } } u(\lambda )d\lambda =\left \{ \begin{matrix} (1/1000)(1-e^{-1000(t+1/400)}), &t\geq-1/400 \\ 0, & t\lt -1/400\end{matrix} \right \} ={\frac{1}{1000}}(1-e^{-1000(t+1/400)})u(t+1/400)

\int\limits_{-\infty }^{t-1/400}{e^{-1000\lambda } } u(\lambda )d\lambda =\left \{ \begin{matrix} (1/1000)(1-e^{-1000(t-1/400)}), &t\geq 1/400 \\ 0, & t\lt 1/400\end{matrix} \right \} ={\frac{1}{1000}}(1-e^{-1000(t-1/400)})u(t-1/400)

Then

4\Bigl[(1-e^{-1000(t+1/400)})\mathbf{u}(t+1/400)-(1-e^{-1000(t-1/400)})\mathbf{u}(t-1/400)\Bigr] \overset{\mathcal F}{\longleftrightarrow } {\frac{4000}{j2\pi f}}{\frac{e^{j2\pi f/400}-e^{-j2\pi f/400}}{j2\pi f+1000}}

Therefore the response is

\begin{array}{c l c r}{{y(t)=4[(1-e^{-1000(t+1/400)})\,\mathrm{u}(t+1/400)-(1-e^{-1000(t-1/400)})\,\mathrm{u}(t-1/400)]}}\end{array}

(Figure 6.35 and Figure 6.36).

6.35
6.36

Related Answered Questions

Question: 6.9

Verified Answer:

This is the product of two functions. Therefore, u...
Question: 6.13

Verified Answer:

We can find the CTFT of the unit rectangle functio...
Question: 6.14

Verified Answer:

Method 1: Do the convolution first and find the CT...
Question: 6.11

Verified Answer:

Ordinarily we would try to directly integrate the ...