Holooly Plus Logo

Question 21.4: Three capacitors with values of 10 μF, 30 μF, and 15 μF are ......

Three capacitors with values of 10 μF, 30 μF, and 15 μF are connected in series to a 480-V, 60-Hz line (Figure 21–11). Find the following circuit values:
X_{C1}—capacitive reactance of the first capacitor
X_{C2}—capacitive reactance of the second capacitor
X_{C3}—capacitive reactance of the third capacitor
X_{CT}—total capacitive reactance for the circuit
C_T—total capacitance for the circuit
I_T—total circuit current
E_{C1}—voltage drop across the first capacitor
VARs_{C1}—reactive power of the first capacitor
E_{C2}—voltage drop across the second capacitor
VARs_{C2}—reactive power of the second capacitor
E_{C3}—voltage drop across the third capacitor
VARs_{C3}—reactive power of the third capacitor
VARs_{CT}—total reactive power for the circuit

21.11
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Since the frequency and the capacitance of each capacitor are known, the capacitive reactance for each capacitor can be found using the formula

X_C=\frac{1}{2πfC}

Recall that the value for C in the formula is in farads and the capacitors in this problem are rated in microfarads.

X_{C1}=\frac{1}{2πfC}

X_{C1}=\frac{1}{377×0.000010}

X_{C1}=265.252\ Ω

X_{C2}=\frac{1}{2πfC}

X_{C2}=\frac{1}{377×0.000030}

X_{C2}=88.417\ Ω

X_{C3}=\frac{1}{2πfC}

X_{C3}=\frac{1}{377×0.000015}

X_{C3}=176.835\ Ω

Since there is no phase angle shift between any of the three capacitive reactances, the total capacitive reactance is the sum of the three reactances (Figure 21–12):

X_{CT}=X_{C1}+X_{C2}+X_{C3}

X_{CT}=265.252\ Ω+88.417\ Ω+176.835\ Ω

X_{CT}=530.504\ Ω

The total capacitance of a series circuit can be computed in a manner similar to that used for computing parallel resistance. Refer to the Pure Capacitive Circuits Formula section of Appendix D. Total capacitance in this circuit is computed using the formula

C_T=\frac{1}{\frac{1}{C_1}+\frac{1}{C_2}+\frac{1}{C_3}}

C_T=\frac{1}{\frac{1}{10\ μF}+\frac{1}{30\ μF}+\frac{1}{15\ μF}}

C_T=\frac{1}{0.2\frac{1}{μF}}

C_T=5\ μF

The total current can be found by using the total capacitive reactance to substitute for R in an Ohm’s law formula:

I_T=\frac{E_{CT}}{X_{CT}}

I_T=\frac{480\ V}{530.504\ Ω}

I_T=0.905\ A

Since the current is the same at any point in a series circuit, the voltage drop across each capacitor can now be computed using the capacitive reactance of each capacitor and the current flowing through it.

E_{C1}=I_{C1}×X_{C1}

E_{C1}=0.905×265.25

E_{C1}=240.051\ V

E_{C2}=I_{C2}×X_{C2}

E_{C2}=0.905×88.417

E_{C2}=80.017\ V

E_{C3}=I_{C3}×X_{C3}

E_{C3}=0.905×176.83

E_{C3}=160.031\ V

Now that the voltage drops of the capacitors are known, the reactive power of each capacitor can be found.

\text{VARs}_{C1}=E_{C1}×I_{C1}

\text{VARs}_{C1}=240.051×0.905

\text{VARs}_{C1}=217.246

\text{VARs}_{C2}=E_{C2}×I_{C2}

\text{VARs}_{C2}=80.017×0.905

\text{VARs}_{C2}=72.415

\text{VARs}_{C3}=E_{C3}×I_{C3}

\text{VARs}_{C3}=160.031×0.905

\text{VARs}_{C3}=144.828

Power, whether true power, apparent power, or reactive will add in any type of circuit. The total reactive power in this circuit can be found by taking the sum of all the VARs for the capacitors or by using total values of voltage and current and Ohm’s law:

\text{VARs}_{CT}=\text{VARs}_{C1}+\text{VARs}_{C2}+\text{VARs}_{C3}

\text{VARs}_{CT}=217.248+72.415+144.828

\text{VARs}_{CT}=434.491

The circuit with all computed values is shown in Figure 21–13.

Appendix D

Metal Sym. Spec. grav. Melt Point
°C               °F
Elec. Cond.
% copper
Lb/in.3
Aluminum Al 2.710 660 1220 64.9 0.0978
Antimony Sb 6.620 631 1167 4.42 0.2390
Arsenic As 5.730 4.90 0.2070
Beryllium Be 1.830 1287 2336 9.32 0.0660
Bismuth Bi 9.800 271 512 1.50 0.3540
Brass (70–30) 8.510 900 1652 28.0 0.3070
Bronze (5% Sn) 8.870 1000 1382 18.0 0.3200
Cadmium Cd 8.650 321 610 22.7 0.3120
Calcium Ca 1.550 842 1562 50.1 0.0560
Cobalt Co 8.900 1495 2723 17.8 0.3210
Copper Cu 8.900 1085 1981 100.0 0.3210
Gold Au 19.30 1064 1945 71.2 0.6970
Graphite 2.250 3500 6332 0.001 0.0812
Indium In 7.300 156 311 20.6 0.2640
Iridium Ir 22.40 2446 4442 32.5 0.8090
Iron Fe 7.200 1400 to
1500
2552 to
2732
17.6 0.2600
Malleable 7.200 1600 to
1500
2912 to
2732
10.0 0.2600
Wrought 7.700 1600 2912 10.0 0.2780
Lead Pb 11.40 327 621 8.35 0.4120
Magnesium Mg 1.740 650 1204 38.7 0.0628
Manganese Mn 7.200 1246 2273 0.90 0.2600
Mercury Hg 13.65 —38.8 —37.7 1.80 0.4930
Molybdenum Mo 10.20 2623 4748 36.1 0.3680
Monel (63–37) 8.870 1300 2372 3.00 0.3200
Nickel Ni 8.90 1455 2646 25.0 0.3210
Phosphorus P 1.82 44.2 111.6 10^{-17} 0.0657
Platinum Pt 21.46 1768 3214 17.5 0.0657

 

Metal Sym. Spec. grav. Melt Point
°C               °F
Elec. Cond.
% copper
Lb/in.3
Potassium K 0.860 63.0 146.1 28.0 0.0310
Selenium Se 4.81 221 430 14.4 0.1740
Silicon Si 2.40 1414 2577 10^{-5} 0.0866
Silver Ag 10.50 962 1764 106 0.3790
1330 2436
Steel (carbon) 7.84 to 1380 to 2516 10.0 0.2830
Stainless
(18–8) 7.92 1500 2732 2.50 0.2860
(13–Cr) 7.78 1520 2768 3.50 0.2810
(18–Cr) 7.73 1500 2732 3.00 0.2790
Tantalum Ta 16.6 3017 5462 13.9 0.5990
Tellurium Te 6.20 450 846 10^{-5} 0.2240
Thorium Th 11.7 1750 3182 9.10 0.4220
Tin Sn 7.30 232 449 15.0 0.2640
Titanium Ti 4.50 1668 3034 2.10 0.1620
Tungsten W 19.3 3422 6181 31.5 0.6970
Uranium U 18.7 1135 2075 2.80 0.6750
Vanadium V 5.96 1910 3470 6.63 0.2150
Zinc Zn 7.14 420 788 29.1 0.2580
Zirconium Zr 6.40 1855 3371 4.20 0.2310
21.12
21.13

Related Answered Questions