Tungsten Thorium Diffusion Couple
Consider a diffusion couple between pure tungsten and a tungsten alloy containing 1 at% thorium. After several minutes of exposure at 2000°C, a transition zone of 0.01 cm thickness is established. What is the flux of thorium atoms at this time if diffusion is due to (a) volume diffusion, (b) grain boundary diffusion, and (c) surface diffusion? (See Table 5-2.)
Table 5-2 The effect of the type of diffusion for thorium in tungsten and for selfdiffusion in silve | ||||
Diffusion Type | Diffusion Coefficient (D) | |||
Thorium in Tungsten | Silver in Silver | |||
D0(cm2/s) | Q (cal/mol) | D0(cm2/s) | Q (cal/mol) | |
Surface | 0.47 | 66,400 | 0.068 | 8,900 |
Grain boundary | 0.74 | 90,000 | 0.24 | 22,750 |
Volume | 1.00 | 120,000 | 0.99 | 45,700 |
The lattice parameter of BCC tungsten is 3.165 Å. Thus, the number of tungsten atoms/cm³ is
cm³W atoms=(3.165×10−8 cm)³/cell2 atoms/cell=6.3×1022
In the tungsten-1 at% thorium alloy, the number of thorium atoms is
cTh=(0.01)(6.3 ×1022)=6.3×1020 cm3Th atoms
In the pure tungsten, the number of thorium atoms is zero. Thus, the concentration gradient is
ΔxΔc=0.01 cm0 – 6.3×1020 cm3Th atoms=−6.3×1022 cm3 ⋅ cmTh atoms
a. Volume diffusion
D=1.0 scm2exp[(1.987 mol ⋅ Kcal)(2273 K)−120,000 molcal]=2.89×10−12 cm2/s
J=−DΔxΔc=−(2.89×10−12 scm2)(−6.3×1022 cm3 ⋅ cmTh atoms)
=1.82×1011 cm2 ⋅ sTh atoms
b. Grain boundary diffusion
D=0.74 scm2exp[(1.987 mol ⋅ Kcal)(2273 K)−90,000 molcal]=1.64×10−9 cm2/s
J=−(1.64×10−9 scm2)(−6.3×1022 cm3 ⋅ cmTh atoms)=1.03×1014 cm2 ⋅ sTh atoms
c. Surface diffusion
D=0.47 scm2exp[(1.987 mol ⋅ Kcal)(2273 K)−66,400 molcal]=1.94×10−7 cm2/s
J=−(1.94×10−7 scm2)(−6.3×1022 cm3 ⋅ cmTh atoms)=1.22×1016 cm2 ⋅ sTh atoms