Question 5.6: Tungsten Thorium Diffusion Couple Consider a diffusion coupl......

Tungsten Thorium Diffusion Couple
Consider a diffusion couple between pure tungsten and a tungsten alloy containing 1 at% thorium. After several minutes of exposure at 2000°C, a transition zone of 0.01 cm thickness is established. What is the flux of thorium atoms at this time if diffusion is due to (a) volume diffusion, (b) grain boundary diffusion, and (c) surface diffusion? (See Table 5-2.)

Table 5-2 The effect of the type of diffusion for thorium in tungsten and for selfdiffusion in silve
Diffusion Type Diffusion Coefficient (D)
Thorium in Tungsten Silver in Silver
D0(cm2/s)D_{0} (cm^2/s) Q (cal/mol) D0(cm2/s)D_{0} (cm^2/s) Q (cal/mol)
Surface 0.47 66,400 0.068 8,900
Grain boundary 0.74 90,000 0.24 22,750
Volume 1.00 120,000 0.99 45,700
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The lattice parameter of BCC tungsten is 3.165 Å. Thus, the number of tungsten atoms/cm³ is
W atomscm³=2 atoms/cell(3.165×108 cm)³/cell=6.3×1022\frac{W \ atoms}{cm³} = \frac{2 \ atoms/cell}{(3.165 × 10^{-8} \ cm)³/cell} = 6.3 × 10^{22}
In the tungsten-1 at% thorium alloy, the number of thorium atoms is
cTh=(0.01)(6.3 ×1022)=6.3×1020 Th atomscm3c_{Th} = (0.01)(6.3  × 10^{22}) = 6.3 × 10^{20} \ \frac{Th \ atoms}{cm^3}
In the pure tungsten, the number of thorium atoms is zero. Thus, the concentration gradient is
ΔcΔx=0 – 6.3×1020 Th atomscm30.01 cm=6.3×1022 Th atomscm3  cm\frac{Δc}{Δx} = \frac{0 \ – \ 6.3 × 10^{20} \ \frac{Th \ atoms}{cm^3}}{0.01 \ cm}=-6.3 × 10^{22} \ \frac{Th \ atoms}{cm^3  ⋅  cm}
a. Volume diffusion
D=1.0 cm2sexp[120,000 calmol(1.987 calmol  K)(2273 K)]=2.89×1012 cm2/sD = 1.0 \ \frac{cm^2}{s} \exp [ \frac{-120,000 \ \frac{cal}{mol}}{(1.987 \ \frac{cal}{mol  ⋅  K})(2273 \ K)}] = 2.89 × 10^{-12}  cm^2 /s
J=DΔcΔx=(2.89×1012 cm2s)(6.3×1022 Th atomscm3  cm)J = -D \frac{Δc}{Δx}=-(2.89 × 10^{-12} \ \frac{cm^2}{s})(-6.3 × 10^{22} \ \frac{Th \ atoms}{cm^3  ⋅  cm})
=1.82×1011 Th atomscm2  s= 1.82 × 10^{11} \ \frac{Th \ atoms}{cm^2  ⋅  s}
b. Grain boundary diffusion
D=0.74 cm2sexp[90,000 calmol(1.987 calmol  K)(2273 K)]=1.64×109 cm2/sD = 0.74 \ \frac{cm^2}{s} \exp [ \frac{-90,000 \ \frac{cal}{mol}}{(1.987 \ \frac{cal}{mol  ⋅  K})(2273 \ K)}] = 1.64 × 10^{-9}  cm^2 /s
J=(1.64×109 cm2s)(6.3×1022 Th atomscm3  cm)=1.03×1014 Th atomscm2  sJ =-(1.64 × 10^{-9} \ \frac{cm^2}{s})(-6.3 × 10^{22} \ \frac{Th \ atoms}{cm^3  ⋅  cm})=1.03 × 10^{14} \ \frac{Th \ atoms}{cm^2  ⋅  s}
c. Surface diffusion
D=0.47 cm2sexp[66,400 calmol(1.987 calmol  K)(2273 K)]=1.94×107 cm2/sD = 0.47 \ \frac{cm^2}{s} \exp [ \frac{-66,400 \ \frac{cal}{mol}}{(1.987 \ \frac{cal}{mol  ⋅  K})(2273 \ K)}] = 1.94 × 10^{-7}  cm^2 /s
J=(1.94×107 cm2s)(6.3×1022 Th atomscm3  cm)=1.22×1016 Th atomscm2  sJ =-(1.94 × 10^{-7} \ \frac{cm^2}{s})(-6.3 × 10^{22} \ \frac{Th \ atoms}{cm^3  ⋅  cm})=1.22 × 10^{16} \ \frac{Th \ atoms}{cm^2  ⋅  s}

Related Answered Questions