Question 4.1: A steel ring of outer diameter 300 mm and internal diameter ...

A steel ring of outer diameter 300 mm and internal diameter 200 mm is shrunk onto a solid steel shaft. The interference is arranged such that the radial pressure between the mating surfaces will not fall below 30 MN/m^{2} whilst the assembly rotates in service. If the maximum circumferential stress on the inside surface of the ring is limited to 240 MN/m^{2}, determine the maximum speed at which the assembly can be rotated. It may be assumed that no relative slip occurs between the shaft and the ring. For steel, ρ = 7470 kg/m^{3}, ν = 0.3, E = 208 GN/m^{2}

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From eqn. (4.7)

\sigma _{r} =A-\frac{B}{r^{2} }-\frac{\left(3+\nu \right) }{8} \rho \omega ^{2} r^{2}                      (1)        (4.7)
Now when    r=0.15        \sigma _{r}=0
0=A-\frac{B}{0.15^{2} }-\frac{3.3 }{8} \rho \omega ^{2} (0.15)^{2}    (2)

Also, when  r=0.1        \sigma _{r}=-30 MN/m^{2}
-30\times 10^{6} =A-\frac{B}{0.1^{2} }-\frac{3.3 }{8} \rho \omega ^{2} (0.1)^{2}               (3)

(2)- (3 )     30\times 10^{6} =B(100-44.4)-\frac{3.3 }{8} \rho \omega ^{2} (0.0225-0.01)

B=\frac{30\times 10^{6} }{55.6} +3.3\times \frac{0.0125\times 7470}{8\times 55.6} \omega ^{2}
B=0.54\times 10^{6}+0.693 \omega ^{2}

and from (3),

A=100(0.54\times 10^{6}+0.693 \omega ^{2} )+\frac{3.3\times 7470\times 0.01\omega ^{2} }{8} -30\times 10^{6}
=54\times 10^{6} +69.3\omega ^{2}+30.8\omega ^{2}-30\times 10^{6}
=24\times 10^{6}+100.1\omega ^{2}

But since the maximum hoop stress at the inside radius is limited to 240 MN/m^{2}, from eqn. (4.8)

\sigma _{H} =A+\frac{B}{r^{2} } -\frac{(1+3\nu ) }{8}\rho \omega ^{2}r^{2}                (4.8)

i.e
240\times 10^{6}=(24\times 10^{6}+100.1\omega ^{2} ) +\frac{(0.54\times 10^{6} +0.693\omega ^{2} )}{0.1^{2} }-\frac{1.9}{8} \times 7470\times 0.01\omega ^{2}
240\times 10^{6}=78\times 10^{6} +169.3\omega ^{2} -17.7\omega ^{2}
151.7\omega ^{2}=162\times 10^{6}
\omega ^{2}=\frac{162\times 10^{6} }{151.7} =1.067\times 10^{6}
\omega =1.33 rad/s=9860 rev/min

Related Answered Questions