Question 20.12: Calculating the Cell emf for Nonstandard Conditions What is ...
Calculating the Cell emf for Nonstandard Conditions
What is the emf of the following voltaic cell at 25°C?
\mathrm{Zn}(s)\left|\mathrm{Zn}^{2+}\left(1.00 \times 10^{-5} M\right) \| \mathrm{Cu}^{2+}(0.100 M)\right| \mathrm{Cu}(s)
PROBLEM STRATEGY
From the cell reaction, deduce the value of n; then calculate Q. Now substitute n, Q, and E_{\text {cell }}^{\circ} into the Nernst equation to obtain E_{\text {cell }}.
Learn more on how we answer questions.
The cell reaction is
\mathrm{Zn}(s)+\mathrm{Cu}^{2+}(a q) \rightleftharpoons \mathrm{Zn}^{2+}(a q)+\mathrm{Cu}(s)
The number of moles of electrons transferred is two; hence, n=2. The reaction quotient is
Q=\frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]}=\frac{1.00 \times 10^{-5}}{0.100}=1.00 \times 10^{-4}
The standard emf is 1.10 \mathrm{~V}, so the Nernst equation becomes
\begin{aligned} E_{\text {cell }} & =E_{\text {cell }}^{\circ}-\frac{0.0592}{n} \log Q \\ & =1.10-\frac{0.0592}{2} \log \left(1.0 \times 10^{-4}\right) \\ & =1.10-(-0.12)=1.22 \mathrm{~V} \end{aligned}
The cell emf is \mathbf{1 . 2 2} \mathbf{V}.