Question 4.18: Objective: Determine the small-signal voltage gain of a JFET...

Objective: Determine the small-signal voltage gain of a JFET amplifier.

Consider the circuit shown in Figure 4.55 with transistor parameters I_{DSS} = 12  mA, V_{P} = −4  V, and λ = 0.008  V^{−1} . Determine the small-signal voltage gain A_{v} = v_{o}/v_{i}

4.55
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The dc quiescent gate-to-source voltage is determined from

V_{GSQ} = \left( \frac{R_{2}}{R_{1}  +  R_{2}} \right) V_{DD}  –  I_{DQ} R_{S}

where

I_{DQ} = I_{DSS} \left( 1  –  \frac{V_{GSQ}}{V_{P}} \right)^{2}

Combining these two equations produces

V_{GSQ} = \left( \frac{180}{180  +  420} \right) (20)  –  (12) (2.7) \left( 1  –  \frac{V_{GSQ}}{(-4)} \right)^{2}

which reduces to

0.025 V^{2}_{GSQ} + 17.25 V_{GSQ} + 26.4 = 0

The appropriate solution is

V_{GSQ} = – 2.0  V

The quiescent drain current is

I_{DQ} = I_{DSS} \left( 1  –  \frac{V_{GSQ}}{V_{P}} \right)^{2} = (12) \left( 1  –  \frac{(- 2.0)}{(-4)} \right)^{2} = 3.00  mA

The small-signal parameters are then

g_{m} = \frac{2 I_{DSS}}{(- V_{P})} \left( 1  –  \frac{V_{GS}}{V_{P}} \right) = \frac{2 (12)}{(4)} \left( 1  –  \frac{(- 2.0)}{(-4)} \right) = 3.00  mA/V

and

r_{o} = \frac{1}{\lambda I_{DQ}} = \frac{1}{(0.008)(3.00)} = 41.7  k \Omega

The small-signal equivalent circuit is shown in Figure 4.56.
Since V_{gs} = V_{i} the small-signal voltage gain is

A_{v} = \frac{V_{o}}{V_{i}} = – g_{m}(r_{o} || R_{D} || R_{L})

or

A_{v} =  – (3.0)(41.7 || 2. 7|| 4) = – 4.66

Comment: The voltage gain of JFET amplifiers is the same order of magnitude as that of MOSFET amplifiers

4.56

Related Answered Questions