Calculate the built-in potential barrier in a pn junction.
Consider a silicon pn junction at T=300 \mathrm{~K} with doping concentrations of N_{a}= 2 \times 10^{17} \mathrm{~cm}^{-3} and N_{d}=10^{15} \mathrm{~cm}^{-3}.
Calculate the built-in potential barrier in a pn junction.
Consider a silicon pn junction at T=300 \mathrm{~K} with doping concentrations of N_{a}= 2 \times 10^{17} \mathrm{~cm}^{-3} and N_{d}=10^{15} \mathrm{~cm}^{-3}.
The built-in potential barrier is determined from Equation (7.10) as
\begin{array}{c}V_{b i}=\frac{k T}{e} \ln \left(\frac{N_{a} N_{d}}{n_{i}^{2}}\right)=V_{t} \ln \left(\frac{N_{a} N_{d}}{n_{i}^{2}}\right) \\ \end{array} (7.10)
\begin{array}{c}V_{b i}=V_{t} \ln \left(\frac{N_{a} N_{d}}{n_{i}^{2}}\right)=(0.0259) \ln \left[\frac{\left(2 \times 10^{17}\right)\left(10^{15}\right)}{\left(1.5 \times 10^{10}\right)^{2}}\right]=0.713 \mathrm{~V}\end{array}
If we change the doping concentration in the p region of the pn junction such that the doping concentrations become N_{a}=10^{16} \mathrm{~cm}^{-3} and N_{d}=10^{15} \mathrm{~cm}^{-3}, then the built-in potential barrier becomes V_{b i}=0.635 \mathrm{~V}.
Comment
The built-in potential barrier changes only slightly as the doping concentrations change by orders of magnitude because of the logarithmic dependence.