Question 12.8: Calculate the change in collector current with a change in n...

Calculate the change in collector current with a change in neutral base width, and estimate the Early voltage.

Consider a uniformly doped silicon npn bipolar transistor with the following parameters: N_{B}=5 \times 10^{16} \mathrm{~cm}^{-3}, N_{C}=2 \times 10^{15} \mathrm{~cm}^{-3}, x_{B 0}=0.70 \mu \mathrm{m}, and D_{B}=25 \mathrm{~cm}^{2} / \mathrm{s}. Assume that x_{B 0} \ll L_{B} and that V_{B E}=0.60 \mathrm{~V}. The collector-base voltage is in the range 2 \leq V_{C B} \leq 10 \mathrm{~V}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Assuming x_{B 0} \ll L_{B}, the excess minority carrier electron concentration in the base can be approximated by Equation (12.15b), which is

\begin{aligned}\delta n_{B}(x) & \approx \frac{n_{B 0}}{x_{B}}\left\{\left[\exp \left(\frac{e V_{B E}}{k T}\right)-1\right]\left(x_{B}-x\right)-x\right\} \end{aligned}     (12.15b)

The collector current is

\left|J_{C}\right|=e D_{B} \frac{d\left[\delta n_{B}(x)\right]}{d x} \cong \frac{e D_{B} n_{B 0}}{x_{B}} \exp \left(\frac{V_{B E}}{V_{t}}\right)

The value of n_{B 0} is found as

n_{B 0}=\frac{n_{i}^{2}}{N_{B}}=\frac{\left(1.5 \times 10^{10}\right)^{2}}{5 \times 10^{16}}=4.5 \times 10^{3} \mathrm{~cm}^{-3}

For V_{C B}=2 \mathrm{~V}, we find (see the following Exercise Problem Ex 12.8)

x_{B}=x_{B 0}-x_{d B}=0.70-0.0518=0.6482 \mu \mathrm{m}

and

\left|J_{C}\right|=\frac{\left(1.6 \times 10^{-19}\right)(25)\left(4.5 \times 10^{3}\right)}{0.6482 \times 10^{-4}} \exp \left(\frac{0.60}{0.0259}\right)=3.195 \mathrm{~A} / \mathrm{cm}^{2}

For V_{C B}=10 \mathrm{~V}, we find (see the following Exercise Problem Ex 12.8)

x_{B}=0.70-0.103=0.597 \mu \mathrm{m}

and

\left|J_{C}\right|=\frac{\left(1.6 \times 10^{-19}\right)(25)\left(4.5 \times 10^{3}\right)}{0.597 \times 10^{-4}} \exp \left(\frac{0.60}{0.0259}\right)=3.469 \mathrm{~A} / \mathrm{cm}^{2}

We now can find, from Equation (12.45a)

\begin{aligned}\frac{d I_{C}}{d V_{C E}} \equiv g_{o}=& \frac{I_{C}}{V_{C E}+V_{A}}=\frac{1}{r_{o}} \\ \end{aligned}     (12.45a)

\begin{aligned} \frac{d J_{C}}{d V_{C E}}=\frac{\Delta J_{C}}{\Delta V_{C B}}=\frac{J_{C}}{V_{C E}+V_{A}}=\frac{J_{C}}{V_{B E}+V_{C B}+V_{A}}\end{aligned}

or

\frac{3.469-3.195}{8}=\frac{3.195}{0.60+2+V_{A}}

The Early voltage is then determined to be

V_{A}=90.7 \mathrm{~V}

Comment

This example indicates how much the collector current can change as the neutral base width changes with a change in the B-C space charge width, and it also indicates the magnitude of the Early voltage.

Related Answered Questions