Question 12.12: Calculate the collector–emitter saturation voltage of a bipo...

Calculate the collector-emitter saturation voltage of a bipolar transistor at T=300 \mathrm{~K}.

Assume that \alpha_{F}=0.99, \alpha_{R}=0.20, I_{C}=1 \mathrm{~mA}, and I_{B}=50 \mu \mathrm{A}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Substituting the parameters into Equation (12.77), we have

\begin{array}{l}V_{C E}(\mathrm{sat})=V_{t} \ln \left[\frac{I_{C}\left(1-\alpha_{R}\right)+I_{B}}{\alpha_{F} I_{B}-\left(1-\alpha_{F}\right) I_{C}} \cdot \frac{\alpha_{F}}{\alpha_{R}}\right] \\ \end{array}     (12.77)

\begin{array}{l}V_{C E}(\mathrm{sat})=(0.0259) \ln \left[\frac{(1)(1-0.2)+(0.05)}{(0.99)(0.05)-(1-0.99)(1)}\left(\frac{0.99}{0.20}\right)\right]=0.121 \mathrm{~V}\end{array}

Comment

This V_{C E} (sat) value is typical of collector-emitter saturation voltages. Because of the \log function, V_{C E} (sat) is not a strong function of I_{C} or I_{B}.

Related Answered Questions