Question 12.7: Calculate the common-emitter current gain of a silicon npn b...

Calculate the common-emitter current gain of a silicon npn bipolar transistor at T=300 \mathrm{~K} given a set of parameters.

Assume the following parameters:

\begin{aligned}D_{E} &=10 \mathrm{~cm}^{2} / \mathrm{s} & x_{B} &=0.70 \mu \mathrm{m} \\D_{B} &=25 \mathrm{~cm}^{2} / \mathrm{s} & x_{E} &=0.50 \mu \mathrm{m} \\ \tau_{E 0} &=1 \times 10^{-7} \mathrm{~s} & N_{E} &=1 \times 10^{18} \mathrm{~cm}^{-3} \\ \tau_{B 0} &=5 \times 10^{-7} \mathrm{~s} & N_{B} &=1 \times 10^{16} \mathrm{~cm}^{-3} \\ J_{r 0} &=5 \times 10^{-8} \mathrm{~A} / \mathrm{cm}^{2} & V_{B E} &=0.65 \mathrm{~V}\end{aligned}

The following parameters are calculated:

\begin{aligned}p_{E 0} &=\frac{\left(1.5 \times 10^{10}\right)^{2}}{1 \times 10^{18}}=2.25 \times 10^{2} \mathrm{~cm}^{-3} \\n_{B 0} &=\frac{\left(1.5 \times 10^{10}\right)^{2}}{1 \times 10^{16}}=2.25 \times 10^{4} \mathrm{~cm}^{-3} \\L_{E} &=\sqrt{D_{E} \tau_{E 0}}=10^{-3} \mathrm{~cm} \\L_{B} &=\sqrt{D_{B} \tau_{B 0}}=3.54 \times 10^{-3} \mathrm{~cm}\end{aligned}

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The emitter injection efficiency factor, from Equation (12.35a), is

\begin{array}{c}\gamma=\frac{1}{1+\frac{p_{E 0} D_{E} L_{B}}{n_{B 0} D_{B} L_{E}} \cdot \frac{\tanh \left(x_{B} / L_{B}\right)}{\tanh \left(x_{E} / L_{E}\right)}} \\ \end{array}     (12.35a)

\begin{array}{c}\gamma=\frac{1}{1+\frac{\left(2.25 \times 10^{2}\right)(10)\left(3.54 \times 10^{-3}\right)}{\left(2.25 \times 10^{4}\right)(25)\left(10^{-3}\right)} \cdot \frac{\tanh (0.0198)}{\tanh (0.050)}}=0.9944\end{array}

The base transport factor, from Equation (12.39a), is

\alpha_{T} \approx \frac{1}{\cosh \left(x_{B} / L_{B}\right)}     (12.39a)

\alpha_{T}=\frac{1}{\cosh \left(\frac{0.70 \times 10^{-4}}{3.54 \times 10^{-3}}\right)}=0.9998

The recombination factor, from Equation (12.44), is

\delta=\frac{1}{1+\frac{J_{r 0}}{J_{s 0}} \exp \left(\frac{-e V_{B E}}{2 k T}\right)}     (12.44)

\delta=\frac{1}{1+\frac{5 \times 10^{-8}}{J_{s 0}} \exp \left(\frac{-0.65}{2(0.0259)}\right)}

where

J_{s 0}=\frac{e D_{B} n_{B 0}}{L_{B} \tanh \left(\frac{x_{B}}{L_{B}}\right)}=\frac{\left(1.6 \times 10^{-19}\right)(25)\left(2.25 \times 10^{4}\right)}{3.54 \times 10^{-3} \tanh \left(1.977 \times 10^{-2}\right)}=1.29 \times 10^{-9} \mathrm{~A} / \mathrm{cm}^{2}

We can now calculate \delta=0.99986. The common-base current gain is then

\alpha=\gamma \alpha_{T} \delta=(0.9944)(0.9998)(0.99986)=0.99406

which gives a common-emitter current gain of

\beta=\frac{\alpha}{1-a}=\frac{0.99406}{1-0.99406}=167

Comment

In this example, the emitter injection efficiency is the limiting factor in the current gain.

Related Answered Questions