Calculate the junction capacitance of a pn junction.
Consider the same pn junction as that in Example 7.3. Again assume that V_{R}=5 \mathrm{~V}.
Calculate the junction capacitance of a pn junction.
Consider the same pn junction as that in Example 7.3. Again assume that V_{R}=5 \mathrm{~V}.
The junction capacitance is found from Equation (7.42) as
\begin{array}{c}C^{\prime}=\left\{\frac{e \epsilon_{s} N_{a} N_{d}}{2\left(V_{b i}+V_{R}\right)\left(N_{a}+N_{d}\right)}\right\}^{1 / 2} \\ \end{array} (7.42)
\begin{array}{c}C^{\prime}=\left\{\frac{\left(1.6 \times 10^{-19}\right)(11.7)\left(8.85 \times 10^{-14}\right)\left(10^{16}\right)\left(10^{15}\right)}{2(0.635+5)\left(10^{16}+10^{15}\right)}\right\}^{1 / 2}\end{array}
or
C^{\prime}=3.66 \times 10^{-9} \mathrm{~F} / \mathrm{cm}^{2}
If the cross-sectional area of the pn junction is, for example, A=10^{-4} \mathrm{~cm}^{2}, then the total junction capacitance is
C=C^{\prime} \cdot A=0.366 \times 10^{-12} \mathrm{~F}=0.366 \mathrm{pF}
Comment
The value of junction capacitance is usually in the \mathrm{pF}, or smaller, range.