Question 7.2: Calculate the space charge width and electric field in a pn ...

Calculate the space charge width and electric field in a pn junction for zero bias. Consider a silicon pn junction at T=300 \mathrm{~K} with doping concentrations of N_{a}=10^{16} \mathrm{~cm}^{-3} and N_{d}=10^{15} \mathrm{~cm}^{-3}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

In Example 7.1, we determined the built-in potential barrier as V_{b i}=0.635 \mathrm{~V}. From Equation (7.31), the space charge width is

\begin{aligned}W &=\left\{\frac{2 \epsilon_{s} V_{b i}}{e}\left[\frac{N_{a}+N_{d}}{N_{a} N_{d}}\right]\right\}^{1 / 2}     (7.31) \\&=\left\{\frac{2(11.7)\left(8.85 \times 10^{-14}\right)(0.635)}{1.6 \times 10^{-19}}\left[\frac{10^{16}+10^{15}}{\left(10^{16}\right)\left(10^{15}\right)}\right]\right\}^{1 / 2} \\&=0.951 \times 10^{-4} \mathrm{~cm}=0.951 \mu \mathrm{m}\end{aligned}

Using Equations (7.28) and (7.29), we can find x_{n}=0.8644 \mu \mathrm{m}, and x_{p}=0.0864 \mu \mathrm{m}.

\begin{array}{l}x_{n}=\left\{\frac{2 \epsilon_{s} V_{b i}}{e}\left[\frac{N_{a}}{N_{d}}\right]\left[\frac{1}{N_{a}+N_{d}}\right]\right\}^{1 / 2} \\ \end{array}     (7.28)

\begin{array}{l}x_{p}=\left\{\frac{2 \epsilon_{s} V_{b i}}{e}\left[\frac{N_{d}}{N_{a}}\right]\left[\frac{1}{N_{a}+N_{d}}\right]\right\}^{1 / 2} \end{array}     (7.29)

The peak electric field at the metallurgical junction, using Equation (7.16) for example, is

\begin{array}{c}\mathrm{E}=\frac{-e N_{d}}{\epsilon_{s}}\left(x_{n}-x\right) \quad 0 \leq x \leq x_{n} \\ \end{array}     (7.16)

\begin{array}{c}\mathrm{E}_{\max }=-\frac{e N_{d} x_{n}}{\epsilon_{s}}=-\frac{\left(1.6 \times 10^{-19}\right)\left(10^{15}\right)\left(0.8644 \times 10^{-4}\right)}{(11.7)\left(8.85 \times 10^{-14}\right)}=-1.34 \times 10^{4} \mathrm{~V} / \mathrm{cm}\end{array}

Comment

The peak electric field in the space charge region of a pn junction is quite large. We must keep in mind, however, that there is no mobile charge in this region; hence there will be no drift current. We may also note, from this example, that the width of each space charge region is a reciprocal function of the doping concentration: The depletion region will extend further into the lower-doped region.

Related Answered Questions