Compressibility Factor
Compare incompressible vs. compressible stagnation-point flow of an ideal gas and express the difference in terms of the compressibility factor
as a function of Mach number \rm M_0=u_0/c and heat capacity ratio \rm k=c_p/c_v.
Concepts | Assumptions | Sketch |
• Bernoulli’s Equation | • Steady isentropic flow, i.e., frictionless adiabatic | ![]() |
• Ideal Gas Law | ||
• Mach # Correlation |
(A) Incompressible Flow: Applying Bernoulli between pointⓢ 0 anⓓ s with Δz = 0 and u _ s =0 at the stagnation point,
\mathrm{p}_{s}=\mathrm{p}_{0}+\frac{\mathsf{\rho}}{2}\mathrm{u}_{0}^{2} (E.3.12.1)
Thus, with ρ_0 = ρ_s = ρ for incompressible flow (see given β – definition):
\rm \beta={\frac{{ p}_{s}-{ p}_{0}}{\rho{u}_{0}^{2}\;/2}}\equiv1To express the stagnation point temperature, we use (see ideal gas):
\rm {\frac{T_{s}}{T_{0}}}={\frac{\bf p_{s}}{\bf p_{0}}} (E.3.12.2a)
so that with Eq. (E.3.12.1):
\rm {T}_{{s}}={ T}_{0}\bigl({ p}_{{{s}}}/{ p}_{0})={T}_{0}\Biggl[{ l}+\frac{{u}_{0}^{2}}{2}\left\lgroup\frac{ \rho}{ p}_{0}\right\rgroup \Biggr] ( E.3.12.2b)
Employing the ideal gas law in the form \rm \rho/p_0=(RT_0)^{-1}, we rewrite
Eq. (E.3.12.2b) as:
\rm T_s=t_0+\frac{u_0^2}{2R} (E.3.12.2c)
(B) Compressible Flow: For this situation, Bernoulli’s equation reads:
\rm \int\frac{dp}{\rho}+\frac{u^2}{2}=¢ (E.3.12.3a)
Expressing ρ as ρ(p) = (p / C)^{1/k}, C ≡ p^{1/k} / ρ , we can integrate the first term, i.e.,
\rm \int \frac{dp}{\rho} =\frac{k}{k-1} \left\lgroup\frac{p}{\rho} \right\rgroup + constant
Hence, Eq. (E.3.12.3a) now reads:
\rm \frac{k}{k-1} \frac{p}{\rho}+\frac{u^2}{2} =¢ (E.3.12.3b)
Applying Eq. (E.3.12.3b) to points ⓪ and ⓢ yields:
\rm \frac{k}{k-1} \left\lgroup\frac{ps}{\rho_s} \right\rgroup =\frac{k}{k-1} \left\lgroup\frac{p_0}{\rho_0} \right\rgroup +\frac{u_0^2}{2} (E.3.12.3c)
Expressing Eq. (3.12.3c) again in terms of \rm T_s with the equation of state p / ρ = RT , we have
\rm \mathrm{T}_{s}=\mathrm{T}_{0}+\frac{\mathrm{k}-1}{\mathrm{k}}\frac{\mathrm{u}_{0}^{2}}{2\mathrm{R}} (E.3.12.4a)
Comparing (E.3.12.4a) with (E.3.12.2c) it is already evident that the second-term coefficient (k − 1)/k (≈0.3 for air) captures the difference between incompressible and compressible flows. In order to express β in terms of the Mach number, we use Eq. (3.42b) which provides \rm kR=c^2/T_0~\text{and}~u_0^2/c^2\equiv M_0^2, i.e.,
\rm c=\sqrt{kRT} (3.42b)
\rm T_{s}={\mathrm T_{0}}\!\left[1+\frac{1}{2}({ k}-1){ M}_{0}^{2}\right] (E.3.12.4b)
Now, with Eq. (3.39) we obtain
\rm\frac{T_2}{T_1}=\left\lgroup\frac{p_2}{p_1} \right\rgroup^{(k-1)/k} \qquad\text{and}\qquad\frac{p_2}{p_1}=\left\lgroup\frac{\rho_2}{\rho_1} \right\rgroup ^k (3.39/40)
\rm { p}_{s}={ p}_{0}\left\lgroup\frac{{T}_{z}}{{ T}_{0}}\right\rgroup ^{\frac{k}{{ k}-1}}={ p}_{0}\left\lgroup1+\frac{{ k}-1}{2}{ M}_{0}^{2}\right\rgroup ^{\frac{k}{{ k}-1}} (E.3.12.5a)
For subsonic flow \rm \frac{k-1}{2}M_0^2\lt 1 and Eq. (E.3.12.5a) can be expanded with the binominal theorem to (see App. A):
In order to form the compressibility factor, we rearrange (E.3.12.5b) as
\rm \mathrm{p}_{s}-{ p}_{0}=\frac{ k}2{p}_{0}{ M}_{0}^{2}\biggl[1+\frac{1}{4}{ M}_{0}^{2}+\frac{2-{\bf k}}{24}{ M}_{0}^{4}+…\biggr] (E.3.12.5c)
However, by definition the factor
\rm \frac{\mathrm{k}}{2}{p}_{0}{ M}_{0}^{2}=\frac{\mathrm{k}}{2}{ p}_{0}\frac{{ u}_{0}^{2}}{\mathrm{k}{ p}_{0}~/{ \rho}_{0}}=\rho_{0}\frac{\mathrm{u}_{0}^{2}}{2}so that
\rm \mathrm{p}_{s}-\mathrm{p}_{o}=\frac{ \rho_{o}}2u_{0}^{2}\bigg[1+\frac14{ M}_{0}^{2}+\frac{2- k}{24}{ M}_{0}^{4}+…\bigg] (E.3.12.5d)
Finally,
\rm \frac{{p_s-p}_{0}}{\frac{\rho_{0}}{2}{u}_{0}^{2}}\equiv\beta =1+\frac{1}{4}{ M}_{0}^{2}+\frac{2-{ k}}{24}{ M}_{0}^{4}+…Graph:
Comment: The graph β(M) indicates that for M < 0.3 in air (being an ideal gas), the error in assuming incompressible flow is less than 2%; however, at M = 1 the error is 28%.