Holooly Plus Logo

Question 3.2: Film Coating Consider “film coating”, i.e., a liquid fed fro......

Film Coating

Consider “film coating”, i.e., a liquid fed from a reservoir forms a film pulled down on an inclined plate by gravity. Obtain the velocity profile, flow rate, and wall shear force.

Sketch
Assumptions Concepts
• Steady laminar fully-developed flow • Reduced N–S eqn. \vec{ \bf v} = (u, 0, 0); u = u(y) only; ∇p = 0
• Negligible air–liquid shear stress
• Constant h, p, ρ and μ
• Neglect end effects, i.e., h = const. • gravity, ρg sin \phi, drives the film flow
• Re ≤ 20 to avoid film surface rippling

 

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Concerning the Solution Steps (i)–(iii) just discussed, an inclined x– y coordinate system is attached to the plate, i.e., the x-momentum equation is of interest (Note, the y- and z- momentum equations are both zero). Based on the sketch and assumptions, \vec {\bf v} = (u, 0, 0), ∇p ≈ 0 (thin-film condition, or no air-pressure variations), and ∂/∂t = 0 (steady-state). With v = w = 0, continuity \nabla\cdot\vec {\bf v}=0 indicates that:

\frac{\partial\mathrm{u}}{\partial\mathrm{x}}+0+0=0                         (E.3.2.1)

which implies fully-developed (or parallel) flow; thus, u = u(y) only. Consulting the equation sheet (App. A) and invoking the postulates u = u(y), v = w = 0, and ∂p / ∂x = 0 , we have with the body force component ρg sin \phi ,

0=\mu{\frac{\mathrm{d}^{2}\mathrm{u}}{\mathrm{d}y^{2}}}+\mathrm{\rho g}\,\sin\phi                      (E.3.2.2)

subject to u(y = 0) = 0 <no-slip> and \tau_{\mathrm{interface}}={\mu}\,{\frac{\mathrm{du}}{\mathrm{dy}}}\bigg|_{\mathrm{y=h}}\approx0 which implies that at y = h → du/dy = 0 <zero velocity gradient>. Double integration of Eq. (E.3.2.2) in the form u′′ = K (see App. A), yields after invoking the two B.C.s:

\mathrm{u}({\rm y})=-\frac{\mathrm{\rho gh}^{2}\;\mathrm{sin}\;\phi}{2\mathrm{\mu}}[\,\left\lgroup\frac{{\rm y}}{\rm h}\right\rgroup ^{2}-2{\rm y}/\mathrm{h}]                       (E.3.2.3a)

Clearly,

\rm{u}({y}={h})={u}_{max}={\frac{\rho \rm{gh}^{2}}{2\mu}}\sin\phi                    (E.3.2.3b)

and the average velocity

\rm{u}_{av}=\frac{1}{A}\int_A{\vec{\bf v}}\cdot{d}{\vec{\bf A}}:={\frac{1}{h}}\int_{0}^{h}{u\,d}{y}={\frac{\rho  gh^{2}\sin\phi}{3\mu}}                        (E.3.2.4a)

Hence,

\mathrm{u}_{\mathrm{av}}={\frac{2}{3}}\mathrm{u}_{\mathrm{max}}                      (E.3.2.4b)

In order to determine the film thickness, we first compute the volumetric flow rate Q, which is usually known.

\mathrm{Q}=\int{{\vec {\bf v}}\cdot\mathrm{d}\vec{\bf A}}:=\mathrm{b}\operatorname*{\int}_{0}^h\mathrm{u\,d}{\bf y}:={\rm u}_{\rm a v}(\mathrm{hb})                          (E.3.2.5a)

where b is the plate width. Thus,

\mathrm{Q}={\frac{\mathsf{\rho }\,\mathrm{ g\,b}\,\textrm{sin}\,\phi }{3\mu}}\mathrm{h}^{3}                     (E.3.2.5b)

from which

\mathrm{h}=\left\lgroup{\frac{3\ \mathbf{\mu}\ \mathrm{Q}}{\rho \,\mathrm{{g}\,\mathrm{b}\ \sin\ {\mathbf{\phi}}}}}\right\rgroup^{1/3}                       (E.3.2.5c)

The shear force (or drag) exerted by the liquid film onto the plate is

{\rm F}_{s}=\int_{\rm A}\tau_{\rm {yx}\, }\mathrm{d}{\rm A}={\rm b}\int_{0}^{\rm l}\left\lgroup{-\mu }\left.{\frac{\mathrm{d}{\rm u}}{\mathrm{d}y}}\right|_{\rm y=0}\right\rgroup \rm dy                             (E.3.2.6a)

Thus,

\mathrm{{F}_{s}}=\mathrm{\rho ~\rm g\,b~h~\rm l~sin~}\phi                                  (E.3.2.6b)

which is the x-component of the weight of the whole liquid film along 0 ≤ x ≤ l .

Graph:

Comments:

\rm{u_{average}} can be used to compute the film Reynolds number, \mathrm{Re}_{\mathrm{h}}={\frac{\mathrm{u}_{a\rm v}\,\mathrm{h}}{\mathrm{\nu}}} , and check if \mathrm{Re}_{\mathrm{h}}\lt \rm{Re_{critical}}\approx 20

• Given Q (or \dot m=\rho Q), the coating thickness can be estimated

Note: The case of wire coating, i.e., falling film on a vertical cylinder is assigned as a homework problem (see Sect. 3.8).

example 3.2 1

Related Answered Questions