Holooly Plus Logo

Question 3.5: Parallel Flows in Cylindrical Tubes Case A: Consider flow th......

Parallel Flows in Cylindrical Tubes

Case A: Consider flow through an annulus with tube radius R and inner concentric cylinder aR, where a < 1, creating a ring-like crosssectional flow area.

Postulates: \rm \vec{\bf v}=(0,0,v_z);~\nabla p\Rightarrow \frac{\partial p}{\partial z} \approx -\frac{\Delta p}{l} =¢;~v_z=v_z(r) only

\frac{\partial}{\partial t} =0 < steady state >;        \frac{\partial}{\partial \phi} =0 < axisymmetric >

Continuity Equation: \rm0+0+\frac{\partial v_z}{\partial z} =0, i.e., fully-developed flow

Boundary Conditions: \rm v_z(r=aR)=0 and \rm v_z(r=R)=0

Case B: Consider Case A but now with \rm\frac{\partial p}{\partial z} \equiv 0 and the inner cylinder rotating at angular velocity \omega _0=¢ <cylindrical Couette flow>; in general, the outer cylinder could rotate as well, say with \omega _1=¢.

Concept Assumptions Sketch
• Reduced N– S equations in cylindrical coordinates • Steady laminar axisymmetric flow
• Constant ∂p/∂z and constant ρ and μ
Concept Assumptions Sketch
• Reduced N-S equations in cylindrical coordinates • Steady laminar axisymmetric flow
• Postulates: \rm \vec{\bf v}=(0,v_\theta ,0)~\frac{\partial p}{\partial \theta } =\frac{\partial p}{\partial z} =0 • Long cylinders, i.e., no end effects
• Small ω’s to avoid Taylor vortices
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Case A: Of interest is the z-momentum equation, i.e., with the stated postulates (see App. A, Equation Sheet):

\rm0=-\frac{\partial p}{\partial z} =\mu\left[\frac{1}{r}\frac{\partial}{\partial r}\left\lgroup r\frac{\partial v_z}{\partial r} \right\rgroup \right]                       (E.3.5.1a)

Thus, with \rm P\equiv \frac{1}\mu \left\lgroup\frac{-\Delta p}{l} \right\rgroup

\rm\frac{d}{dr} \left\lgroup r\frac{dv_z}{dr} \right\rgroup =P\cdot r                          (E3.5.1b)

and hence after double integration,

\rm v_z(r)=\frac{P}{4} r^2+C_1\ln r+C_2                      (E.3.5.2)

Invoking the BCs,

\rm0=\frac{P}{4} (aR)^2+C_1\ln(aR)+C_2

and

\rm0=\frac{P}{4} R^2+C_1\ln R+C_2

yields

\rm v_z(r)=\frac{PR^2}{4} \left[1-\left\lgroup\frac{r}{R} \right\rgroup^2-\frac{1-a^2}{\ln(1/a)}\ln\left\lgroup\frac{R}{r} \right\rgroup \right]                           (E.3.5.3)

and

\rm\tau_{rz}=\mu\frac{dv_z}{dr} :=\frac{\mu \,P}{2} R\left[\left\lgroup\frac{r}{R} \right\rgroup-\frac{1-a^2}{2\ln(1/a)}\left\lgroup\frac{R}{r} \right\rgroup \right]                                 (E.3.5.4a, b)

Notes:
• For Poiseuille flow, i.e., no inner cylinder, the solution is (see Example 3.4):

\rm v_z(r)=\frac{R^2}{4\mu} \left\lgroup\frac{\Delta p}{l} \right\rgroup \left[1-\left\lgroup\frac{r}{R} \right\rgroup^2 \right]                     (E.3.5.5)

This solution is not recovered when letting a → 0 because of the prevailing importance of the ln-term near the inner wall.
• The maximum annular velocity is not in the middle of the gap aR ≤ r ≤ R, but closer to the inner cylinder wall, where the velocity gradient is zero and hence

\left.\rm\tau_{rz}\right|_{\rm r=bR}=0

This equation can be solved for b so that \rm v_z(r=bR)=v_{max}.

• The average velocity is \rm v_{av}=\int v_z(r)dA, where dA = 2πrdr 〈cross-sectional ring of thickness dr〉 , so that

\rm v_{av}=\frac{R^2 }{8\mu} \left\lgroup\frac{\Delta p}{l} \right\rgroup \left[\frac{1-a^4}{1-a^2}-\frac{1-a^2}{\ln(1/a)} \right]                         (E.3.5.6)

and hence

\rm Q=v_{av}[\pi R^2(1-a^2)]:=\frac{\pi R^4}{8\mu} \left\lgroup\frac{\Delta p}{l} \right\rgroup \left[(1-a^4)-\frac{(1-a^2)^2}{\ln(1/a)} \right]           (E.3.5.7)

• The net force exerted by the fluid on the solid surfaces comes from two wall shear stress contributions:

\rm F_s=\left(-\tau_{rz}|_{r=aR}\right) (2\pi aRl)+\left(\tau_{rz}|_{r=R}\right) (2\pi Rl)                (E.3.5.8a)

\therefore ~~\rm F_s=\pi R^2\Delta p(1-a^2)                      (E.3.5.8b)

Case B: With \rm v_r=v_z=0;\;\frac{\partial}{\partial t} =\frac{\partial}{\partial \theta } =0; and \rm v_\theta =v_\theta (r) only (see Continuity and BCs) we reduce the θ-component of the \ Navier– Sokes equation (see Equation Sheet) to:

\rm 0=0+\mu\left[\frac{\partial}{\partial r} \left\lgroup\frac{1}{r}\frac{\partial}{\partial r}(rv_\theta ) \right\rgroup \right]                       (E.3.5.9)

subject to
\rm v_ θ(r= aR) =ω_0 (aR)~ and~ v_θ (r =R) = ω_1R.

Again, as in simple Couette flow after start-up, the moving-wall induced frictional effect propagates radially and the forced cylinder rotations balanced by the drag resistance generate an equilibrium velocity profile. Double integration yields:

\rm v_\theta (r)=C_1r+\frac{C_2}{r}                 (E.3.5.10a)

where

\rm C_1=\frac{\omega _1R^2-\omega _0(aR)^2}{R^2-(aR)^2} ~~and~~C_2=\frac{a^2R^4(\omega _0-\omega _1)}{R^2-(aR)^2}               (E.3.5.10b, c)

Notes:
• The r-momentum equation reduces to:

\rm -\frac{v_\theta ^2}{r} =-\frac{1}{\rho} \frac{\partial p}{\partial r}                       (E.3.5.11)

Thus, with the solution for \rm v_θ (r)  known, Eq. (E.3.5.11) can be used to find ∂p / ∂r and ultimately the load-bearing capacity.

• Applying this solution as a first-order approximation to a journal bearing where the outer tube (or sleeve) is fixed, i.e., ω_1 ≡0, we have in dimensionless form:

\rm\frac{v_\theta (r)}{\omega _0R}=\frac{a^2}{1-a^2} \left\lgroup\frac{R}{r}-\frac{r}{R} \right\rgroup                   (E.3.5.12)

• The torque necessary to rotate the inner cylinder (or shaft) of length l is

\rm T=\int(aR)dF:=(aR)\int\limits_0^l\tau_{r\theta} |_{r=aR}dA                  (E.3.5.13)

where dA = π(aR)dz and \rm\left.\tau_{r\theta} \right|_{r=aR}=\mu\left[r\frac{d}{dr}\left\lgroup\frac{v_\theta }{r} \right\rgroup \right] _{r=aR}.

Thus with:

\rm\tau_{surface}\equiv \tau_{r\theta }|_{r=aR}=2\mu\frac{\omega _oR^2}{R^2-(aR)^2}                   (E.3.5.14)

\rm T=\tau_{surf}A_{surf}(aR):=4\pi\mu(aR)^2l\frac{\omega _0}{1-a^2}                   (E.3.5.15)

Graph:

\rm    T/[4πμR^2lω_0]

Comments:
• An electric motor may provide the necessary power, \rm P = Tω_0 , which turns into thermal energy which has to be removed to avoid overheating.
• The Graph depicts the nonlinear dependence of T(a) for a given system. As the gap between rotor (or shaft) and stator widens, the wall stress increases (see Eq. (E.3.5.14)) as well as the surface area and hence the necessary torque.

التقاط

Related Answered Questions