Holooly Plus Logo

Question 3.10: Radial Flow Through a Porous-Walled Tube Consider pressure-d......

Radial Flow Through a Porous-Walled Tube
Consider pressure-driven flow in radial direction through a porous tubular wall. Applications include radial flow in a porous pipe, ultrafiltration, tubular filter or membrane, seepage into a lymph vessel, etc. For the given system (see Sketch), find the radial p(r) distribution and v(r) profile as well as the added mass flow rate over the tube length L.

Concepts Assumptions Sketch
• Darcy’s law: \rm\vec{\bf v}-\frac{κ}{\mu} \nabla p\,\text{where}\,\vec{\bf v}=(0,v,0) and v = v(r) • Steady radial seepage in \rm R_1\leq r\leq R_2
• Constant pressures and properties
• Mass balance • No gravity effect
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Writing Eq. (3.22) in reduced form (see Assumptions and Concept):

\rm\nabla p=-\frac{\mu}{æ}\vec{\bf u}-\underbrace{C_F\frac{\rho\vec{\bf u}|\vec{\bf u}|}{\sqrt æ} }_{\underset{term}{Forchheimer} } +\underbrace{\hat\mu\nabla^2\vec{\bf u}}_{\underset{term}{Brinkman} }                 (3.22)

\rm \vec{\bf {v}}=-\frac{æ}{\mu} \nabla p                         (E.3.10.1)

and taking the divergence of Eq. (E.3.10.1) we have with \rm\nabla \cdot \vec v=0 (continuity equation for incompressible fluids)

0=-\frac{æ}{\mu} \nabla^2 p                        (E.3.10.2)

where ∇² is the Laplace operator (App. A). For our 1-D case in cylindrical coordinates, Eq. (3.10.2) is simply

\rm \frac{1}{r} \frac{d}{dr} \left\lgroup r\frac{dp}{dr} \right\rgroup =0                         (E.3.10.3)

subject to \rm p(r=R_1)=p_i\,\text{and}\,p(r=R_2)=p_o. Double integration leads to

\rm p(r)=C_1 \ln r+C_2

And finally for \rm p_o\gt p_i:

\rm \frac{{ p}-{ p_{i}}}{{ p}_{o}-{ p_{i}}}=\frac{\mathrm{ln}({ r}/{ R}_{1})}{\mathrm{ln}({ R}_{2}/\,{ R}_{1})}                           (E.3.10.4)

Now, with Darcy’s law in the r-direction, i.e.,

\rm v=-\frac{æ}{\mu} \left\lgroup \frac{dp}{dr} \right\rgroup                  (E.3.10.5a)

we obtain with the given p(r) and \rm \Delta p\equiv  p_o-p_i

\rm v(r)=-\frac{æ}{\mu} \frac{\Delta p}{\ln (R_2/R_1)} \frac{1}{r}                      (E.3.10.5b)

A radial mass balance provides the added mass flow rate

\rm \Delta \dot m =-\rho v\Big|_{r=R_1}A_{surface}                     (E.3.10.6a)

where \rm A_{surface}=2\pi R_1L, so that

\Delta\rm\dot m=\frac{2\pi æ\rho \Delta p}{\mu\ln(R_2/R_1)} L                 (E.3.10.6b)

Graph:

Comments: The v(r) -function (E.3.10.5b) is hyperbolic, i.e., for a given Δp, æ , μ and geometry, v decreases inversely with r. As expected radial mass influx increases with wall permeability, tube length, and pressure difference.

example 3.10 1

Related Answered Questions