Question 16.9: A uniform beam is simply supported over a span of 6 m. It ca......

A uniform beam is simply supported over a span of 6 m. It carries a trapezoidally distributed load with intensity varying from 30 kN/m at the left-hand support to 90 kN/m at the right-hand support. Find the equation of the deflection curve and hence the deflection at the mid-span point. The second moment of area of the cross-section of the beam is 120×106mm4120\times10^{6}\operatorname{mm}^{4} and Young’s modulus E=206,000 N/mm².

Answer:    41 mm (downward)

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The beam is as shown in Fig. S.16.9.
Taking moments about B,

RA×630×622602×6×63=0R_{\mathrm{A}}\times6-{\frac{30\times6^{2}}{2}}-{\frac{60}{2}}\times6\times{\frac{6}{3}}=0

which gives

RA=150kNR_{\mathrm{A}}=150\,\mathrm{kN}

The bending moment at any section a distance z from A is then

M=150z+30z22+(9030)(z6)(z2)(z3)M=-150z+\frac{30z^{2}}{2}+\left(90-30\right)\left(\frac{z}{6}\right)\left(\frac{z}{2}\right)\left(\frac{z}{3}\right)

i.e.,

M=150z+15z2+5z33M=-150z+15z^{2}+{\frac{5z^{3}}{3}}

Substituting in the second of Eqs (16.31),

u=MyEIyy,ν=MxEIxxu^{\prime\prime}=-{\frac{M_{y}}{E I_{y y}}},\quad ν^{\prime\prime}=-{\frac{M_{x}}{E I_{x x}}}        (16.31)

 

EI(d2vdz2)=150z15z25z33E I{\biggl(}{\frac{\mathrm{d}^{2}v}{\mathrm{d}z^{2}}}{\biggr)}=150z-15z^{2}-{\frac{5z^{3}}{3}}

 

EI(dvdz)=75z25z35z412+C1E I{\biggl(}{\frac{\mathrm{d}v}{\mathrm{d}z}}{\biggr)}=75z^{2}-5z^{3}-{\frac{5z^{4}}{12}}+C_{1}

 

EIv=25z35z44z512+C1z+C2E I v=25z^{3}-{\frac{5z^{4}}{4}}-{\frac{z^{5}}{12}}+C_{1}z+C_{2}

When z = 0, υ=0 so that C2=0,C_{2}=0, and when z = 6m, υ=0. Then

0=25×635×6446512+6C10=25\times6^{3}-{\frac{5\times6^{4}}{4}}-{\frac{6^{5}}{12}}+6C_{1}

from which

C1=522C_{1}=-522

and the deflected shape of the beam is given by

EIv=25z35z44z512522zE I v=25z^{3}-{\frac{5z^{4}}{4}}-{\frac{z^{5}}{12}}-522z

The deflection at the mid-span point is then given by

EIvmidspan=25×335×3443512522×3=1012.5kNm3E I v_{m id-s p a n}=25\times3^{3}-{\frac{5\times3^{4}}{4}}-{\frac{3^{5}}{12}}-522\times3=-1012.5\mathrm{kNm}^{3}

Therefore,

vmidspan=1012.5×1012120×106×206000=41.0mm  (downwards)v_{\mathrm{mid}-\mathrm{span}}={\frac{-1012.5\times10^{12}}{120\times10^{6}\times206000}}=-41.0\mathrm{mm}\ \ (\mathrm{downwards})
s.16.9

Related Answered Questions