Holooly Plus Logo

Question 16.13: A centrifugal pump is placed at height 3 m above the sump wa......

A centrifugal pump is placed at height 3 m above the sump water level, and the outlet of the delivery pipe is 8 m above the sump level. The vane angle at outlet is 45°. The velocity of flow through the impeller is constant at 1.6 m/s. Determine the pressure heads at inlet and outlet to the wheel. Assume velocity of water in the pipe is equal to the velocity of flow through the impeller. Neglect losses.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Given: H_{s}  =  3m,  H_{s}  +  H_{d} = H = 8 m, Φ = 45°, V_{f}  =  V_{f_{1}}  =  1.6  m/s,  and  V_{s}  =  V_{d}  =  V_{f} = 1.6 m/s
All the losses are neglected.
To find the pressure heads at inlet, i.e. in CC level, we apply Bernoulli’s equation at AA (sump level) and at CC, i.e. centre or inlet [Figure 16.16 (a)],

Z_{A}+{\frac{p_{A}}{\rho g}}+{\frac{V_{A}^{2}}{2g}}=Z_{\mathrm{inlet}}+{\frac{p_{\mathrm{inlet}}}{\rho g}}+{\frac{V_{\mathrm{inlet}}^{2}}{2g}}+\mathrm{Losses}       (i)

Here,            Z_{A} = 0 as datum level,

\frac{p_{A}}{\rho g} = Atmospheric pressure head

Velocity at sump level = 0
Losses = 0
Hence, Eq. (i) may be written as

0+10.3+0=3+{\frac{p_{\mathrm{inlet}}}{\rho g}}+{\frac{1.6^{2}}{2\times9.81}}

or         10.3=3+{\frac{p_{\mathrm{inlet}}}{\rho g}}+0.13

Thus,    Pressure head at inlet = \frac{p_{\mathrm{inlet}}}{\rho g}

= 10.3 – 3.13 = 7.17 m of water absolute
= -3.13 m (Vacuum)
Considering outlet diagram in Figure 16.16(b), we get

V_{\mathbf{w_{1}}}=u_{1}-V_{f_{1}}\cot\phi

or        V_{w_{1}}=u_{1}-1.6\;\mathrm{cot}\phi=u_{1}-1.6\;\times1=(u_{1}-1.6)\;\mathrm{m/s}      (ii)

Now,         Energy head at outlet-energy head at inlet = \frac{V_{w_{1}}u_{1}}{g} as loss is neglected

Again,         Energy head at outlet = Energy head at delivery point D

=8+{\frac{(1.6)^{2}}{2\times9.81}}=8.18\,{\mathrm{m\ of~water}}

Thus,           {\frac{V_{\mathrm{w_{1}}}u_{1}}{g}}\,=\,8.18\,\operatorname{m}\quad{\mathrm{or}}\quad{\frac{(u_{1}-1.6)u_{1}}{9.81}}=8.18\,{\mathrm{m}}

or           u_{1}^{2}-1.6u_{1}-80.245=0           (iii)

Solving the quadratic equation [Eq. (iii)] in u_{1}, we get

u_{1}={\frac{1.6\pm{\sqrt{\left(-1.6\right)^{2}-4\times1\times\left(-80.245\right)}}}{2\times1}}\quad{\mathrm{or}}\quad u_{1}={\frac{1.6\pm17.987}{2}}

Hence,                    u_{1} = 9.793 m/s
Therefore, V_{w_{1}} = 9.793 – 1.6 = 7.183 m/s
From the outlet velocity diagram in Figure 16.16(b), we have

V_{1}={\sqrt{V^{2}w_{1}+V_{f_{1}}^{2}}}={\sqrt{7.183^{2}+1.6^{2}}}=7.36\,{\mathrm{m/s}}

We have          {\frac{V_{1}^{2}}{2g}}={\frac{(7.36)^{2}}{2\times9.81}}=2.761\,{\mathrm{m}}

Again,                        Energy head at outlet-Energy head at inlet = {\frac{V_{w_{1}}u_{1}}{g}}\,=\,8.18\,\,{\mathrm{m}}

\left[{\frac{p_{\mathrm{outlet}}}{\rho g}}+{\frac{V_{\mathrm{1}}^{2}}{2g}}\right]-\left[{\frac{p_{\mathrm{inlet}}}{\rho g}}+{\frac{V^{2}}{2g}}\right]=8.18~\mathrm{m}

or         {\Bigg[}{\frac{p_{\mathrm{outlet}}}{\rho g}}+2.761{\Bigg]}-[-3.13+0.13]=8.18

or             {\frac{\rho_{\mathrm{outlet}}}{\rho g}}=8.18-5.76=2.42\operatorname{m \ of~water}

16.16

Related Answered Questions

Question: 16.8

Verified Answer:

Let V_{f} = Velocity of flow at inl...
Question: 16.9

Verified Answer:

Manometric head (H_{m}) is the head...
Question: 16.10

Verified Answer:

\frac{Rise  of  pressure  head  in  m}{Work...
Question: 16.11

Verified Answer:

Given: N = 960 rpm, Φ = 45°, V_{f_{1}}[/lat...
Question: 16.12

Verified Answer:

Given: D= 15 cm = 0.15 m, D_{1}= 30...
Question: 16.14

Verified Answer:

Given: D = 40 cm = 0.4 m, D_{1} = 8...
Question: 16.15

Verified Answer:

Given: D = 30 cm = 0.3 m, D_{1} = 6...
Question: 16.16

Verified Answer:

Given: D_{1}= 60 cm = 0.6 m, [latex...
Question: 16.17

Verified Answer:

Given: D_{1}= 50 cm = 0.5 m, [latex...
Question: 16.18

Verified Answer:

Given: N = 1000 rpm, Q = 0.15 m³/s, N_{s}[/...