Holooly Plus Logo

Question 16.10: The impeller of a centrifugal pump has outlet blade angle Φ ......

The impeller of a centrifugal pump has outlet blade angle Φ with the tangent at outer periphery. The pump has no diffuser. The velocity of flow is constant, and the absolute velocity at inlet is radial. Assuming flow through the impeller is frictionless, show that:

\frac{Rise  of  pressure  head  in  m}{Work  done/s/N}  =  \frac{1}{2}\left\lgroup 1+\frac{V_{f_{1}}  cot  Φ}{u_{1}}\right\rgroup ,    with usual notations

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.
\frac{Rise  of  pressure  head  in  m}{Work  done/s/N}  =  \frac{(p_{1} /ρg) — (p/ρg)}{(V_{m_{1}} u_{1} /g) }

Therefore, we have to show that

{\frac{(p_{1}/\rho g)-(p/\rho g)}{(V_{\mathrm{w_{1}}}u_{1}/g)}}={\frac{1}{2}}\left\lgroup1+{\frac{V_{f_{1}}\cot\phi}{u_{1}}}\right\rgroup

From the above velocity triangle at outlet (Figure 16.13), we get

{\frac{V_{w_{1}}u_{1}}{g}}={\frac{(u_{1}-V_{f_{1}}\cot\phi)u_{1}}{g}}           (i)

When there is no loss in the impeller, we have

\frac{V_{w1}u_{1}}{g}=\frac{(u_{1}-V_{f_{1}}\cot\phi)u_{1}}{g}\left\lgroup\frac{p_{1}}{\rho g}+\frac{V_{1}^{2}}{2g}\right\rgroup -\left\lgroup\frac{p}{\rho g}+\frac{V^{2}}{2g}\right\rgroup

or         \frac{(u_{1}-V_{f_{1}}\cot\phi)u_{1}}{g}=\left\lgroup\frac{p_{1}}{\rho g}+\frac{V_{1}^{2}}{2g}\right\rgroup -\left\lgroup\frac{p}{\rho g}+\frac{V^{2}}{2g}\right\rgroup         (ii)

From outlet diagram of Figure 16.13, we obtain

V_{1}^{2}=V_{w_{1}}^{2}+V_{f_{1}}^{2}=V_{f_{1}}^{2}+(u_{1}-V_{f_{1}}\cot\phi)^{2}               (iii)

Applying Eq. (iii) in Eq. (ii), we get

\left\lgroup\frac{p_{1}}{\rho g}-\frac{p}{\rho g}\right\rgroup =\frac{(u_{1}-V_{f_{1}}\cot\phi)u_{1}}{g}+\frac{V_{f_{1}}^{2}}{2g}-\frac{V_{f_{1}}^{2}+(u_{1}-V_{f_{1}}\cot\phi)^{2}}{2g}

or         \left\lgroup\frac{p_{1}}{\rho g}-\frac{p}{\rho g}\right\rgroup =\frac{(u_{1}-V_{f_{1}}\cot\phi)}{g}[2u_{1}-(u_{1}-V_{f_{1}}\cot\phi)]

or               \left\lgroup\frac{p_{1}}{\rho g}-\frac{p}{\rho g}\right\rgroup =\frac{(u_{1}-V_{f_{1}}\cot\phi)}{g}[u_{1}+V_{f_{1}}\cot\phi]

or               \left\lgroup\frac{p_{1}}{\rho g}-\frac{p}{\rho g}\right\rgroup =\frac{(u²_{1}-V²_{f_{1}}\cot²\phi)}{g}         (iv)

Again dividing Eq. (iv) by Eq. (i), we get

{\frac{(p_{1}/\rho g)-(p/\rho g)}{(V_{w_{1}}u_{1}/g)}}={\frac{(u_{1}^{2}-V_{f_{1}}^{2}\cot^{2}\phi)/g}{(u_{1}-V_{f_{1}}\cot\phi)u_{1}/g}}

or         {\frac{(p_{1}/\rho g)-(p/\rho g)}{(V_{w_{1}}u_{1}/g)}}={\frac{(u_{1}^{2}-V_{f_{1}}^{2}\cot^{2}\phi)/g}{(u_{1}-V_{f_{1}}\cot\phi)u_{1}/g}}=\frac{u_{1}+V_{f_{1}}\cot\phi}{2u_{1}}

or         {\frac{(p_{1}/\rho g)-(p/\rho g)}{(V_{w_{1}}u_{1}/g)}}={\frac{1}{2}}\left\lgroup1+{\frac{V_{f_{1}}\cot\phi}{u_{1}}}\right\rgroup

16.3

Related Answered Questions

Question: 16.13

Verified Answer:

Given: H_{s}  =  3m,  H_{s}  +  H_{d}[/late...
Question: 16.8

Verified Answer:

Let V_{f} = Velocity of flow at inl...
Question: 16.9

Verified Answer:

Manometric head (H_{m}) is the head...
Question: 16.11

Verified Answer:

Given: N = 960 rpm, Φ = 45°, V_{f_{1}}[/lat...
Question: 16.12

Verified Answer:

Given: D= 15 cm = 0.15 m, D_{1}= 30...
Question: 16.14

Verified Answer:

Given: D = 40 cm = 0.4 m, D_{1} = 8...
Question: 16.15

Verified Answer:

Given: D = 30 cm = 0.3 m, D_{1} = 6...
Question: 16.16

Verified Answer:

Given: D_{1}= 60 cm = 0.6 m, [latex...
Question: 16.17

Verified Answer:

Given: D_{1}= 50 cm = 0.5 m, [latex...
Question: 16.18

Verified Answer:

Given: N = 1000 rpm, Q = 0.15 m³/s, N_{s}[/...