Holooly Plus Logo

Question 16.8: Starting from the first principles, show that the theoretica......

Starting from the first principles, show that the theoretical pressure rise through the impeller of a centrifugal pump is given by: (1/2g) (V²_{f}  +  u²_{1}  –  cosec²Φ) with usual notations.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Let V_{f} = Velocity of flow at inlet
u_{1}= Peripheral velocity of impeller at outlet
V_{f_{1}}= Velocity of flow at outlet
Φ = Impeller angle at outlet
The inlet and the outlet of the pump and the above notations are shown with other connected notations in Figures 16.11(a) and 16.11(b).

Now, applying Bernoulli’s equation at outlet and inlet of the impeller,
Energy at outlet = Energy at inlet + Work done by the impeller

or              {\frac{p_{1}}{\rho g}}+{\frac{V_{1}^{2}}{2g}}+Z_{1}={\frac{p}{\rho g}}+{\frac{V^{2}}{2g}}+Z+\mathrm{Energy~for~work~to~be~done}     (i)

As shown in the figure, inlet and outlet of the impeller are in the same vertical level, and hence Z = Z_{1} and energy needed to do work is

=\;{\frac{1}{g}}(V_{\mathrm{w_{1}}}u_{1})

The expression given by Eq. (i) may now be written as

{\frac{p_{1}}{\rho g}}+{\frac{V_{1}^{2}}{2g}}={\frac{p}{\rho g}}+{\frac{V^{2}}{2g}}+{\frac{V_{w_{1}}u_{1}}{g}}

or             \frac{p_{1}}{\rho g}-\frac{p}{\rho g}\,=\,\frac{V^{2}}{2g}-\frac{V_{1}^{2}}{2g}+\frac{V_{w_{1}}u_{1}}{g}

but       \frac{p_{1}}{\rho g}-\frac{p}{\rho g} = Pressure rise

Hence,  Pressure rise = \quad\frac{V^{2}}{2g}-\frac{V_{1}^{2}}{2g}+\frac{V_{w_{1}}u_{1}}{g}

or            \mathrm{Pressure\ rise}={\frac{1}{2g}}(V^{2}-V_{1}^{2}+2V_{w_{1}}u_{1})          (ii)

From the outlet diagram,

V_{1}^{2}=(V_{w_{1}}^{2}+V_{f_{1}}^{2})

and from the inlet diagram       V_{1}  =  V_{f}
Now, Eq. (ii) may be written as

\mathrm{Pressure\ rise}={\frac{1}{2g}}(V_{f}^{2}-V_{w_{1}}^{2}-V_{f_{1}}^{2}+2V_{w_{1}}u_{1})

or           \mathrm{Pressure~rise}=\frac{1}{2g}[V_{f}^{2}-V_{f_{1}}^{2}-(u_{1}-V_{f_{1}}\cot\phi)^{2}+2u_{1}(u_{1}-V_{f_{1}}\cot\phi)]

Since,      V_{w_{1}}=(u_{1}-V_{f_{1}}\cot\phi)      (from outlet velocity diagram)

or       \mathrm{Pressure\ rise}={\frac{1}{2g}}[V_{f}^{2}-V_{f_{1}}^{2}-(u_{1}^{2}+V_{f_{1}}^{2}\cot^{2}\phi-2u_{1}V_{f_{1}}\cot\phi)+(2u_{1}^{2}-2u_{1}V_{f_{1}}\cot\phi)]

or         \mathrm{Pressure\ rise}=\frac{1}{2g}[V_{f}^{2}+u_{1}^{2}-V_{f_{1}}^{2}(1+\mathrm{cot}^{2}\,\phi)]

Since,       (1+\cot^{2}\phi)=cosec^{2}\phi

Therefore,     \mathrm{Pressure\ rise}={\frac{1}{2g}}[V_{f}^{2}+u_{1}^{2}-V_{f_{1}}^{2}\mathrm{cosec}^{2}\phi]

16.11

Related Answered Questions

Question: 16.13

Verified Answer:

Given: H_{s}  =  3m,  H_{s}  +  H_{d}[/late...
Question: 16.9

Verified Answer:

Manometric head (H_{m}) is the head...
Question: 16.10

Verified Answer:

\frac{Rise  of  pressure  head  in  m}{Work...
Question: 16.11

Verified Answer:

Given: N = 960 rpm, Φ = 45°, V_{f_{1}}[/lat...
Question: 16.12

Verified Answer:

Given: D= 15 cm = 0.15 m, D_{1}= 30...
Question: 16.14

Verified Answer:

Given: D = 40 cm = 0.4 m, D_{1} = 8...
Question: 16.15

Verified Answer:

Given: D = 30 cm = 0.3 m, D_{1} = 6...
Question: 16.16

Verified Answer:

Given: D_{1}= 60 cm = 0.6 m, [latex...
Question: 16.17

Verified Answer:

Given: D_{1}= 50 cm = 0.5 m, [latex...
Question: 16.18

Verified Answer:

Given: N = 1000 rpm, Q = 0.15 m³/s, N_{s}[/...