Holooly Plus Logo

Question 5.66: (a) Determine the constants in the following relations : h^–......

(a) Determine the constants in the following relations :

\begin{aligned} h^{-4} \delta^{4} & =D^{4}\left(1+a \delta^{2}+b \delta^{4}\right)+O\left(h^{6}\right), \\ h D & =\mu \delta+a_{1} \Delta^{3} E^{-1}+(h D)^{4}\left(a_{2}+a_{3} \mu \delta+a_{4} \delta^{2}\right)+O\left(h^{7}\right). \end{aligned}

(b) Use the relations in (a) to construct a difference method for the boundary value problem

y^{i v}(x)=p(x) y(x)+q(x)

y(0), y(1), y^{\prime}(0) and y^{\prime}(1) are given.

The step size is h=1 / N, where N is a natural number. The boundary conditions should not be approximated with substantially lower accuracy than the difference equation. Show that the number of equations and the number of unknowns agree.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) Applying the difference operators on y\left(x_{n}\right), we obtain the truncation error at x=x_{n} as

\begin{aligned} T_{n}^{(2)} & =\delta^{4} y\left(x_{n}\right)-h^{4}\left(1+a \delta^{2}+b \delta^{4}\right) y^{(4)}\left(x_{n}\right)+O\left(h^{10}\right) \\ & =C_{6} h^{6} y^{(6)}\left(x_{n}\right)+C_{8} h^{8} y^{(8)}\left(x_{n}\right)+O\left(h^{10}\right) \end{aligned}

where C_{6}=\frac{1}{6}-a, C_{8}=\frac{1}{80}-\frac{a}{12}-b.

Setting C_{6}=0, C_{8}=0, we obtain a=1 / 6, b=-1 / 720.

Next, we apply the first derivative operator h D on y\left(x_{n}\right) and write as

\begin{aligned} T_{n}^{(1)}= & h y^{\prime}\left(x_{n}\right)-\mu \delta y\left(x_{n}\right)-a_{1} \Delta^{3} y\left(x_{n}-h\right) \\ & -h^{4}\left(a_{2}+a_{3} \mu \delta+a_{4} \delta^{2}\right) y^{(4)}\left(x_{n}\right)+O\left(h^{7}\right) \\ = & h y^{\prime}\left(x_{n}\right)-\frac{1}{2}\left[y\left(x_{n+1}\right)-y\left(x_{n-1}\right)\right]-a_{1}\left[y\left(x_{n+2}\right)\right. \\ & \left.-3 y\left(x_{n+1}\right)+3 y\left(x_{n}\right)-y\left(x_{n-1}\right)\right]-h^{4}\left(a_{2}+a_{4} \delta^{2}\right) y^{(4)}\left(x_{n}\right) \\ & -\frac{1}{2} h^{4} a_{3}\left[y^{(4)}\left(x_{n+1}\right)-y^{(4)}\left(x_{n-1}\right)\right] \\ = & C_{3} h^{3} y^{(3)}\left(x_{n}\right)+C_{4} h^{4} y^{(4)}\left(x_{n}\right)+C_{5} h^{5} y^{(5)}\left(x_{n}\right)+C_{6} h^{6} y^{(6)}\left(x_{n}\right)+O\left(h^{7}\right) \end{aligned}

\begin{aligned} \text{where}\qquad & C_{3}=-\frac{1}{6}-a_{1}, C_{4}=-\frac{a_{1}}{2}-a_{2}, \\ & C_{5}=-\frac{1}{120}-\frac{a_{1}}{4}-a_{3}, C_{6}=-\frac{a_{1}}{12}-a_{4} . \end{aligned}

Setting C_{3}=C_{4}=C_{5}=C_{6}=0, we obtain

a_{1}=-1 / 6, a_{2}=1 / 12, a_{3}=1 / 30, a_{4}=1 / 72.

(b) The difference scheme at x=x_{n}, can be written as

\begin{aligned} \delta^{4} y_{n} & =h^{4}\left(1+\frac{1}{6} \delta^{2}-\frac{1}{720} \delta^{4}\right)\left[p\left(x_{n}\right) y_{n}+q\left(x_{n}\right)\right], \\ n & =1(1) N-1, \\ y^{\prime}\left(x_{n}\right) & =h^{-1}\left[\mu \delta y_{n}-\frac{1}{6} \Delta^{3} E^{-1} y_{n}\right]+h^{3}\left(\frac{1}{12}+\frac{1}{30} \mu \delta+\frac{1}{72} \delta^{2}\right)\left[p\left(x_{n}\right) y_{n}+q\left(x_{n}\right)\right], \\ n & =0, N . \end{aligned}

When n=1, the first equation contains the unknown y_{-1} outside [0,1]. This unknown can be eliminated using the second equation at n=0. Similarly, when n=N-1, the first equation contains, y_{N+1} outside [0,1] which can be eliminated using the second equation at n=N. Further, y(0), y(1) are prescribed. Hence, we finally have (N-1) equations in N-1 unknowns.

Related Answered Questions