Holooly Plus Logo

Question 5.69: In order to illustrate the significance of the fact that eve......

In order to illustrate the significance of the fact that even the boundary conditions for a differential equation are to be accurately approximated when difference methods are used, we examine the differential equation

y^{\prime \prime}=y,

with boundary conditions y^{\prime}(0)=0, y(1)=1, which has the solution y(x)=\frac{\cosh x}{\cosh (1)}.

We put x_{n}=n h, assume that 1 / h is an integer and use the difference approximation

y_{n}^{\prime \prime} \approx\left(y_{n+1}-2 y_{n}+y_{n-1}\right) / h^{2} .

Two different representations for the boundary conditions are

(1) symmetric case : y_{-1}=y_{1} ; y_{N}=1, N=1 / h,

(2) non-symmetric case

y_{0}=y_{1}, y_{N}=1.

(a) Show that the error y(0)-y_{0} asymptotically approaches a h^{2} in the first case, and b h in the second case, where a and b are constants to be determined.

(b) Show that the truncation error in the first case is O\left(h^{2}\right) in the closed interval [0,1].

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) Substituting the second order difference approximation into the differential equation, we get the difference equation

y_{n+1}-2\left(1+\frac{h^{2}}{2}\right) y_{n}+y_{n-1}=0.

The characteristic equation is given by

\xi^2-2\left(1+\begin{array}{c} h^2 \\ 2 \end{array}\right) \xi+1=0

\begin{aligned} \text{with roots}\qquad\xi_{1 h} & =1+\frac{h^2}{2}+\left[\left(1+\frac{h^2}{2}\right)^2-1\right]^{1 / 2} \\ & =1+\frac{h^2}{2}+h\left[1+\frac{h^2}{4}\right]^{1 / 2}=1+h+\frac{h^2}{2}+\frac{h^3}{8}+\ldots \\ & =e^h\left(1-\frac{1}{24} h^3+O\left(h^4\right)\right), \\ \xi_{2 h} & =1+\frac{h^2}{2}-\left[\left(1+\frac{h^2}{2}\right)^2-1\right]^{1 / 2}=1-h+\frac{h^2}{2}-\frac{h^3}{8}+\ldots \\ & =e^{-h}\left(1+\frac{1}{24} h^3+O\left(h^4\right)\right) . \end{aligned}

The solution of the difference equation may be written as

y_{n}=C_{1} e^{n h}\left(1-\frac{n}{24} h^{3}+O\left(h^{4}\right)\right)+C_{2} e^{-n h}\left(1+\frac{n}{24} h^{3}+O\left(h^{4}\right)\right)

where C_{1} and C_{2} are arbitrary parameters to be determined with the help of the discretization of the boundary conditions.

(1) Symmetric case : We have y_{-1}=y_{1}. Hence, we obtain

\begin{aligned} & C_{1} e^{h}\left(1-\frac{1}{24} h^{3}+O\left(h^{4}\right)\right)+C_{2} e^{-h}\left(1+\frac{1}{24} h^{3}+O\left(h^{4}\right)\right) \\ = & C_{1} e^{-h}\left(1+\frac{1}{24} h^{3}+O\left(h^{4}\right)\right)+C_{2} e^{h}\left(1-\frac{1}{24} h^{3}+O\left(h^{4}\right)\right) \end{aligned}

We get C_{1}=C_{2}.

Next, we satisfy y_{N}=1, N h=1.

y_{N}=C_{1} e\left(1-\frac{1}{24} h^{2}+O\left(h^{3}\right)\right)+C_{2} e^{-1}\left(1+\frac{1}{24} h^{2}+O\left(h^{3}\right)\right)=1 .

Since C_{1}=C_{2}, we obtain

\begin{aligned} C_{1} & =\frac{1}{\left[2 \cosh (1)-\left(h^{2} / 12\right) \sinh (1)+O\left(h^{3}\right)\right]} \\ & =\frac{1}{2 \cosh (1)}\left[1-\frac{h^{2} \sinh (1)}{24 \cosh (1)}+O\left(h^{3}\right)\right]^{-1} \\ & =\frac{1}{2 \cosh (1)}\left[1+\frac{h^{2} \sinh (1)}{24 \cosh (1)}+O\left(h^{3}\right)\right] \end{aligned}

The solution of the difference equation becomes

\begin{aligned} & y_{n}=C_{1}\left[2 \cosh x_{n}-\frac{x_{n} h^{2}}{12} \sinh x_{n}\right] . \\ & y_{0}=2 C_{1}=\frac{1}{\cosh (1)}+\frac{h^{2}}{24} \frac{\sinh (1)}{\cosh ^{2}(1)}+O\left(h^{3}\right) . \end{aligned}

We get from the analytic solution y(0)=1 / \cosh (1).

Hence, we have y(0)-y_{0}=a h^{2},

where a=-\frac{1}{24} \frac{\sinh (1)}{\cosh ^{2}(1)}=-0.020565 .

(2) Non-symmetric case: y_{0}=y_{1}, y_{N}=1.

Satifying the boundary conditions, we obtain

C_{1}+C_{2}=C_{1} e^{h}+C_{2} e^{-h}+O\left(h^{3}\right),

or \left(e^{h}-1\right) C_{1}=\left(1-e^{-h}\right)=C_{2}+O\left(h^{3}\right),

or \left[h+\frac{h^2}{2}+O\left(h^3\right)\right] C_1=\left[h-\frac{h^2}{2}+O\left(h^3\right)\right] C_2

or C_1=\left\{\left(1+\frac{h}{2}\right)^{-1}\left(1-\frac{h}{2}\right)+O\left(h^2\right)\right\} C_2=\left[1-h+O\left(h^2\right)\right] C_2 \text {. }

y_N=C_1 e+C_2 e^{-1}+O\left(h^3\right) \text {, }

or 1=\left[(1-h) e+e^{-1}+O\left(h^2\right)\right] C_2 \text {. }

Neglecting the error term, we obtain

\begin{aligned} C_{2} & =\frac{1}{2 \cosh (1)-h e}=\frac{1}{2 \cosh (1)}\left[1-\frac{h e}{2 \cosh (1)}\right]^{-1} \\ & =\frac{1}{2 \cosh (1)}\left[1+\frac{h e}{2 \cosh (1)}\right], \end{aligned}

where the O\left(h^{2}\right) term is neglected.

C_{1}=(1-h) C_{2}=\frac{1}{2 \cosh (1)}\left[1-h+\frac{h e}{2 \cosh (1)}\right]

where the O\left(h^{2}\right) term is neglected.

\begin{aligned} \text{Thus, we have}\qquad y_{0} & =C_{1}+C_{2} \\ & =\frac{1}{2 \cosh (1)}\left[2-h+\frac{h e}{\cosh (1)}\right]=\frac{1}{2 \cosh (1)}\left[2+\frac{h \sinh (1)}{\cosh (1)}\right] \\ & =\left[\frac{1}{\cosh (1)}+\frac{h \sinh (1)}{2 \cosh ^{2}(1)}\right] \\ y(0)-y_{0} & =\frac{1}{\cosh (1)}-y_{0}=-\frac{h}{2}\left(\frac{\sinh (1)}{2 \cosh ^{2}(1)}\right)=12 a h . \end{aligned}

We have b h=12 a h, \quad \text { or } \quad b=12 a=-0.24678 .

(b) Hence, from (a), in the symmetric case the truncation error is O\left(h^{2}\right) while in the nonsymmetric case it is O(h).

Related Answered Questions