Holooly Plus Logo

Question 5.70: A finite difference approximation to the solution of the two......

A finite difference approximation to the solution of the two-point boundary value problem

\begin{aligned} & y^{\prime \prime}=f(x) y+g(x), x \in[a, b] \\ & y(a)=A, y(b)=B \end{aligned}

is defined by

-h^{-2}\left(y_{n-1}-2 y_{n}+y_{n+1}\right)+f\left(x_{n}\right) y_{n}=-g\left(x_{n}\right), 1 \leq n \leq N-1,

and y_0=A, y_N=B,

where N is an integer greater than 1, h=(b-a) / N, x_{n}=a+n h, and y_{n} denotes the approximation to y\left(x_{n}\right).

(i) Prove that if f(x) \geq 0, x \in[a, b] and y(x) \in C^{4}[a, b], then

\left|y\left(x_{n}\right)-y_{n}\right| \leq \frac{h^{2}}{24} M_{4}\left(x_{n}-a\right)\left(b-x_{n}\right)

where M_{4}=\max _{x \in[a, b]}\left|y^{(4)}(x)\right|.

(ii) Show that with N=3, the difference scheme gives an approximation to the solution of

\begin{aligned} y^{\prime \prime}-y & =1, x \in[0,1] \\ y(0) & =0, y(1)=e-1, \end{aligned}

for which \left|y\left(x_{n}\right)-y_{n}\right| \leq \frac{e}{864}, 0 \leq n \leq 3.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(i) The difference equation at x=x_{n} is defined by

-y_{n-1}+2 y_{n}-y_{n+1}+h^{2} f_{n} y_{n}=-g_{n} h^{2}, n=1(1) N-1 .

Incorporating the boundary conditions y_{0}=A and y_{N}=B into the difference equations, we write the system of equations in matrix notation as

J y +h^2 F y = D

\begin{aligned} & \text { where } \quad J =\left[\begin{array}{rrrr} 2 & -1 & & 0 \\ -1 & 2 & -1 & \\ & \ldots & & \\ & -1 & 2 & -1 \\ 0 & & -1 & 2 \end{array}\right], \quad F =\left[\begin{array}{llll} f_1 & & & 0 \\ & f_2 & & \\ 0 & & \ddots & \\ & & & f_{N-1} \end{array}\right] \\ & y =\left[\begin{array}{lllll} y_1 & y_2 \ldots y_{N_{-1}} \end{array}\right]^T, D =\left[\begin{array}{llll} A -h^2 g_1 & -h^2 g_2 & \ldots & B-h^2 g_{N_{-1}} \end{array}\right]^T . \\ & \end{aligned}

Exact solution satisfies the equation

\mathrm{J} \mathrm{y}\left(x_{n}\right)+h^{2} \mathrm{F} \mathrm{y}\left(x_{n}\right)=\mathrm{D}-\mathrm{T}

where \mathrm{T}=\left[\begin{array}{llll}T_{1} & T_{2} & \ldots & T_{N-1}\end{array}\right]^{T} is the truncation error.

In order to find the error equation, we put y_{n}=y\left(x_{n}\right)+\varepsilon_{n} in the difference equation and obtain

\mathrm{J} \boldsymbol{\varepsilon}+h^{2} \mathrm{F} {\varepsilon}=\mathrm{T}

where {\varepsilon}=\left[\begin{array}{llll}\varepsilon_{1} & \varepsilon_{2} & \ldots & \varepsilon_{N-1}\end{array}\right]^{T} .

The truncation error is given by

\begin{aligned} T_{n} & =y\left(x_{n+1}\right)-2 y\left(x_{n}\right)+y\left(x_{n-1}\right)-h^{2} f\left(x_{n}\right) y\left(x_{n}\right)-h^{2} g\left(x_{n}\right) \\ & =\frac{h^{4}}{12} y^{(4)}(\xi), x_{n-1}<\xi<x_{n+1} . \end{aligned}

Hence, \left|T_{n}\right| \leq \frac{h^{4}}{12} M_{4}, M_{4}=\max _{x \in[a, b]}\left|y^{(4)}(x)\right|.

Since f(x) \geq 0, x \in[a, b] we have

\mathrm{J}+h^{2} \mathrm{F}>\mathrm{J}.

The matrices \mathrm{J} and \mathrm{J}+h^{2} \mathrm{F} are irreducibly diagonal dominent with non-positive off diagonal elements and positive diagonal elements. Hence, \mathrm{J} and \mathrm{J}+h^{2} \mathrm{F} are monotone matices.

If follows that \left(\mathrm{J}+h^{2} \mathrm{F}\right)^{-1}<\mathrm{J}^{-1}.

Hence, we get \quad \boldsymbol{\varepsilon}=\left(\boldsymbol{J}+h^{2} \mathrm{F}\right)^{-1} \mathrm{T} \leq \mathrm{J}^{-1} \mathrm{T}.

We now determine \mathrm{J}^{-\mathrm{1}}=\left(j_{i, j}\right) explicitly. On multiplying the rows of \mathrm{J} by the j th column of \mathrm{J}^{-1}, we have the following difference equations.

\begin{aligned} & (i)-2 j_{1, j}-j_{2, j}=0, \\ & (\text { ii })-j_{i-1, j}+2 j_{i, j}-j_{i+1, j}=0, \quad 2 \leq i \leq j-1, \\ & (i i i)-j_{j-1, j}+2 j_{j, j}-j_{j+1, j}=1, \\ & (i v)-j_{i-1, j}+2 j_{i, j}-j_{i+1, j}=0, \quad j+1 \leq i \leq N-2, \\ & (v)-j_{N-2, j}+2 j_{N-1, j}=0. \end{aligned}

On solving the difference equations, we get

j_{i, j}=\left|\begin{array}{ll} \frac{i(N-j)}{N}, & i \leq j, \\ \frac{j(N-i)}{N}, & i \geq j, \end{array}\right.

Note that the matrix \mathrm{J}^{-1} is symmetric. The row sum of the nth row of \mathrm{J}^{-1} is

\sum_{j=1}^{N-1} j_{n, j}=\frac{n(N-n)}{2}=\frac{\left(x_{n}-a\right)\left(b-x_{n}\right)}{2 h^{2}}.

Thus, we have

\left|\varepsilon_n\right| \leq \frac{h^4}{12} M_4 \frac{\left(x_n-a\right)\left(b-x_n\right)}{2 h^2}

or \left|y\left(x_n\right)-y_n\right| \leq \frac{h^2}{24} M_4\left(x_n-a\right)\left(b-x_n\right).

(ii) We are given that

\begin{aligned} & N=3, f(x)=1, g(x)=1, A=0 ,\\ & B=e-1, a=0, b=1, h=1 / 3. \end{aligned}

We have

y^{(4)}(x)=y^{\prime \prime}(x)=y(x)+1.

Therefore, M_4=\max _{x \in[0,1]}\left|y^{(4)}(x)\right|=\max _{x \in[0,1]}|y(x)+1|=e-1+1=e .

Maximum of \left(x_{n}-a\right)\left(b-x_{n}\right) occurs for x_{n}=(a+b) / 2 and its maximum magnitude is (b-a)^{2} / 4=1 / 4. Hence

\left|y\left(x_{n}\right)-y_{n}\right| \leq \frac{e}{864}, 0 \leq n \leq 3.

Related Answered Questions