Holooly Plus Logo

Question 5.71: Consider the homogeneous boundary value problem y″ + Λ y = 0......

Consider the homogeneous boundary value problem

\begin{gathered} y^{\prime \prime}+ \Lambda y=0, \\ y(0)=y(1)=0. \end{gathered}

(a) Show that the application of the fourth order Numerov method leads to the system

\left[\mathrm{J}-\frac{\lambda}{1+\lambda / 12} \mathrm{I}\right] \mathrm{y}=\mathrm{0}

where \lambda=h^{2} \Lambda.

(b) Show that the approximation to the eigenvalues by the second and fourth order methods are given by 2(1-\cos n \pi h) / h^{2} and 12(1-\cos n \pi h) /\left[h^{2}(5+\cos n \pi h)\right], 1 \leq n \leq N -1 , respectively, where h=1 / N.

(c) Noticing that \Lambda_{n}=n^{2} \Pi^{2}, show that the relative errors

\frac{\Lambda_{n}-h^{-2} \lambda_{n}}{ \Lambda_{n}}

for the second and the fourth order methods are given by \Lambda_{n} h^{2} / 12 and \Lambda_{n}^{2} h^{4} / 240, respectively, when terms of higher order in h are neglected.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) The application of the Numeröv method leads to the system

\begin{aligned} & y_{n+1}-2 y_{n}+y_{n-1}+\frac{\lambda}{12}\left(y_{n+1}+10 y_{n}+y_{n-1}\right)=0, \\ & n=1,2, \ldots N-1, \end{aligned}

or -y_{n+1}+2 y_{n}-y_{n-1}-\frac{\lambda}{1+\lambda / 12} y_{n}=0 ,

n=1,2, \ldots, N-1,

where \lambda=h^2 \Lambda .

Incorporating the boundary conditions we obtain

\left(\mathrm{J}-\frac{\lambda}{1+\lambda / 12} \mathrm{I}\right) \mathrm{y}=\mathrm{0}.

(b) For the second order method, we have

\begin{array}{r} y_{n+1}-2\left[1-(\lambda / 2] y_{n}+y_{n-1}=0\right., \\ y_{0}=y_{N}=0. \end{array}

The characteristic equation of the difference equation is given by

\xi^{2}-2[1-(\lambda / 2)] \xi+1=0.

Substitute \cos \theta=1-(\lambda / 2). Then the roots of the characteristic equation are given by \xi=\cos \theta \pm i \sin \theta=e^{ \pm i \theta}. The solution of the difference scheme becomes

y_{n}=C_{1} \cos n \theta+C_{2} \sin n \theta .

Boundary conditions y(0)=0, y(1)=0 lead to C_{1}=0, C_{2} \sin (N \theta)=0, or \theta=n \pi / N. Since h=1 / N, we have

1-\frac{1}{2} \lambda_n=\cos \theta=\cos (n \pi h) \text {, or } \quad \lambda_n=2[1-\cos (n \pi h)] \text {, }

or \Lambda_n=\frac{2}{h^2}[1-\cos (n \pi h)] .

Similarly, for the Numeröv method, we substitute

\frac{1-5 \lambda / 12}{1+\lambda / 12}=\cos \theta

and find that \theta=n \pi / N=n \pi h.

The eigenvalue is given by

\left\{\left[1-\frac{5}{12} \lambda_{n}\right] /\left[1+\frac{1}{12} \lambda_{n}\right]\right\}=\cos (n \pi h), \text { or } \quad \lambda_{n}=\frac{12[1-\cos (n \pi h)]}{5+\cos (n \pi h)}

or \Lambda_{n}=\frac{12}{h^{2}}\left[\frac{1-\cos (n \pi h)}{5+\cos (n \pi h)}\right] .

(c) The analytical solution of the eigenvalue problem gives \Lambda_{n}=n^{2} \pi^{2}.

\begin{aligned} \text{We have}\qquad 1-\cos (n \pi h) & =1-1+\frac{1}{2} n^{2} \pi^{2} h^{2}-\frac{1}{24} n^{4} \pi^{4} h^{4}+O\left(h^{6}\right) \\ & =\frac{1}{2} n^{2} \pi^{2} h^{2}\left[1-\frac{1}{12} n^{2} \pi^{2} h^{2}+O\left(h^{4}\right)\right] \end{aligned}

For the second order method, we obtain

\begin{aligned} \frac{1}{h^{2}} \lambda_{n} & =\frac{2}{h^{2}}[1-\cos (n \pi h)] \\ & =n^{2} \pi^{2}\left[1-\frac{1}{12} n^{2} \pi^{2} h^{2}+O\left(h^{4}\right)\right], \end{aligned}

Thus, the relative error in the eigenvalue is given by

\frac{\Lambda_{n}-h^{-2} \lambda_{n}}{\Lambda_{n}}=\frac{\Lambda_{n}}{12} h^{2}+O\left(h^{4}\right).

We have

\begin{aligned} & {[5+\cos (n \pi h)]^{-1} }=\left[6-\frac{1}{2} n^{2} \pi^{2} h^{2}+\frac{1}{24} n^{4} \pi^{4} h^{4}+O\left(h^{6}\right)\right]^{-1} \\ &=\frac{1}{6}\left[1-\left\{\frac{1}{12} n^{2} \pi^{2} h^{2}-\frac{1}{144} n^{4} \pi^{4} h^{4}+O\left(h^{6}\right)\right\}\right]^{-1} \\ &=\frac{1}{6}\left[1+\frac{1}{12} n^{2} \pi^{2} h^{2}+O\left(h^{6}\right)\right] \\ & \frac{[1-\cos (n \pi h)]}{[5+\cos (n \pi h)]}=\left(\frac{1}{6}\right)\left(\frac{1}{2} n^{2} \pi^{2} h^{2}\right)\left[1-\frac{1}{12} n^{2} \pi^{2} h^{2}+\frac{1}{360} n^{4} \pi^{4} h^{4}+O\left(h^{6}\right)\right] \\ & \times[1+\left.\frac{1}{12} n^{2} \pi^{2} h^{2}+O\left(h^{6}\right)\right] \\ &=\frac{1}{12} n^{2} \pi^{2} h^{2}\left[1-\frac{1}{240} n^{4} \pi^{4} h^{4}+O\left(h^{6}\right)\right] \\ & \frac{1}{h^{2}} \lambda_{n}=\frac{12}{h^{2}} \frac{[1-\cos (n \pi h)]}{[5+\cos (n \pi h)]}=n^{2} \pi^{2}\left[1-\frac{1}{240} n^{4} \pi^{4} h^{4}+O\left(h^{6}\right)\right] \end{aligned}

Therefore, for the Numeröv method, the relative error is given by

\frac{\Lambda_{n}-h^{-2} \lambda_{n}}{\Lambda_{n}}=\frac{1}{240} n^{2} \pi^{2} h^{4}+O\left(h^{6}\right)=\frac{1}{240} \Lambda_{n}^{2} h^{4}+O\left(h^{6}\right).

Related Answered Questions