Holooly Plus Logo

Question 7.4: A hollow shaft having outside diameter of 45 mm and inner di......

A hollow shaft having outside diameter of 45 mm and inner diameter of 30 mm is operating without failure when driven by a torque of 345 N·m. Now the same shaft is to be operated under an additional internal pressure of 110 MPa to produce a new product. If the shaft is made of steel having ultimate strength of 670 MPa and yield strength of 560 MPa, do you recommend for use?

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Case I When the shaft is under the action of torque T = 345 N·m.

Neglecting weight of the shaft and no other force is acting on it, the shear stress is obtained as follows.

d_o=45 \mathrm{~mm} ~d_i=30 \mathrm{~mm} ~\mathrm{k}=30 / 45=0.667

\tau_y=0.3 \sigma_y=0.3 \times 560=168 \mathrm{~MPa}

=0.18 \sigma_{\mathrm{ult}}=0.18 \times 670=120.6 \mathrm{~MPa}

J=\frac{\pi\left(d_o^4-d_i^4\right)}{32}=\frac{\pi\left(45^4-30^4\right)}{32}=323056.35 \mathrm{~mm}^4

\tau=\frac{T d_o}{2 J} \frac{345000 \times 45}{2 \times 323056.35}=24.03 \mathrm{~N} / \mathrm{mm}^2

Principal stresses are

\sigma_{1,2}=\tau=\pm 24.03 \mathrm{~MPa}

Case II When the shaft is to work under T and internal pressure p

The stresses develop due to internal pressure can be obtained assuming it as thick cylinder subjected to internal pressure. The stresses are

\sigma_{r r}=-p=-110 \mathrm{~MPa}

\sigma_{\theta \theta}=\frac{p\left(r_o^2+r_i^2\right)}{\left(r_o^2-r_i^2\right)}=\frac{110\left(22.5^2+15^2\right)}{\left(22.5^2-15^2\right)}=286 \mathrm{~MPa}

\sigma_{z \theta}=\tau=24.03 \mathrm{~MPa}

The state of stress is

\sigma=\left[\begin{array}{ccc}\sigma_{r r} & \sigma_{r \theta} & \sigma_{r z} \\\sigma_{\theta r} & \sigma_{\theta \theta} & \sigma_{\theta z} \\\sigma_{z r} & \sigma_{z \theta} & \sigma_{z z}\end{array}\right]=\left[\begin{array}{llc}-110 & 0 & 0 \\0 & 286 & 24.03 \\0 & 24.03 & 0\end{array}\right]

Principal stresses are obtained from the following characteristic equation

\sigma^3-I_1 \sigma+I_2 \sigma-I_3=0

where

I_1= sum of normal stresses = -110 + 286 + 0 = 176.0

I_2=\left|\begin{array}{lc}-110 & 0 \\0 & 286\end{array}\right|+\left|\begin{array}{cc}286 & 24.03 \\24.03 & 0\end{array}\right|+\left|\begin{array}{cc}-110 & 0 \\0 & 0\end{array}\right|=31460-577.4409+0

=-3.203 \times 10^4

I_3=\left|\begin{array}{lcc}-110 & 0 & 0 \\0 & 286 & 24.03 \\0 & 24.03 & 0\end{array}\right|=6.3518 \times 10^4

The characteristic equation is

\sigma^3-176 \sigma-3.20 \sigma+6.352=0

Solving the equation, we get principal stresses as:

\sigma_1=-110 \quad \sigma_2=-2.005 \text { and } \sigma_3=288.005~(\mathrm{MPa})

According to von Mises theory

\sigma_{\mathrm{von}}=\left[\frac{\left(\sigma_1-\sigma_2\right)^2+\left(\sigma_2-\sigma_3\right)^2+\left(\sigma_3-\sigma_1\right)^2}{2}\right]^{1 / 2}

\sigma_{\mathrm{von}}=\left[\frac{(-110+2.005)^2+(-2.005-288.005)^2+(288.005+110)^2}{2}\right]^{1 / 2}

= 356.5 MPa which is less than yield strength.

Alternative

von Mises stress is given by

\sigma_{\mathrm{von}}=\frac{1}{\sqrt{2}}\left[\left(\sigma_{r r}-\sigma_{\theta \theta}\right)^2+\left(\sigma_{\theta \theta}-\sigma_{z z}\right)^2+\left(\sigma_{z z}-\sigma_{r r}\right)^2+6\left(\sigma_{r \theta}^2+\sigma_{\theta z}^2+\sigma_{z r}^2\right)\right]^{1 / 2}

\sigma_{\mathrm{von}}=\frac{1}{\sqrt{2}}\left[(-110-286)^2+(286-0)^2+(0+110)^2+6\left(0+24.03^2+0\right)\right]^{1 / 2}

=356.5 \mathrm{~MPa}<\sigma_y,

Hence yielding will not occur. Hence it can be used for the given condition of loading.

Matlab Programming and output of sample problem 7.4 is presented below.

The 'Blue Check Mark' means that either the MATLAB code/script/answer provided in the answer section has been tested by our team of experts; or the answer in general has be fact checked.

Learn more on how do we answer questions.

Script File

% Solution of Example 7.4
% shaft design
sig_yield = 560;
sig_uts = 670;
sig_shear = 0.5*sig_yield;
sig_ von = 0.577*sig_yield;
a = [-110 0 0; 0 286 24.03; 0 24.03 0];
il = a(l, l)+a(2,2)+a(3,3);
xl = [a(l,l) a(l,2);a(2,l) a(2,2)];
x2 = [a(2,2) a(2,3);a(3,2) a(3,3)];
x3 = [a(l, 1) a(l ,3);a(3, 1) a(3,3)];
xxl = det(xl);
xx2 = det(x2);

xx3 = det(x3);
i2 = xxl + xx2 + xx3;
i3 = det(a);
pr = eig(a);
prl = pr(l, l);
pr2 = pr(2, l);
pr3 = pr(3, l);
vonl = sqrt((prl-pr2)A2+(pr2-pr3)A2+(pr3-prl)A2);
von = (l/sqrt(2))*vonl;
maxssl_2 = 0.5*abs(prl-pr2);
maxss2_3 = 0.5*abs(pr2-pr3);
maxss3_1 = 0.5*abs(pr3-prl);
ss = [maxssl_2, maxss2_3, maxss3_1];
max_shear_stress = max(ss)
von_mises_stress = von
fos_ss = sig_shear/max_shear_stress
if fos_ss>l
'safe to use as per maximum shear stress theory'
else
'unsafe as per maximum shear stress theory'
end
fos_ von_mises = sig_yield/sig_ von
if fos_ von_mises> 1
'safe to use as per von Mises theory'
else
'unsafe as per von Mises theory'
end

Output of the program is as follows

>>
max_shear_stress =
199.0025
von_mises_stress =
356.4945
fos_ss =
1.4070
ans=
safe to use as per maximum shear stress theory
fos_ von_mises =
1.7331
ans=
safe to use as per von Mises theory

Related Answered Questions