Holooly Plus Logo

Question 7.18: A solid shaft rotating on two bearings 1.5 m apart is subjec......

A solid shaft rotating on two bearings 1.5 m apart is subjected to a bending moment of 3 kN·m and a torque of 1.5 kN·m. The shaft is made of carbon steel for which ultimate strength is 652 MPa. Design the shaft. Assume combined fatigue correction factor as 0.58. The stress concentration factor for bending moment and torque are 1.5 and 2.0 respectively. Take the static factor of safety as 1.5.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Fatigue strength in rotating bending is obtained as

S_e^*=0.5 \times \sigma_{\mathrm{ult}}=0.5 \times 652=326 \mathrm{~MPa}

Corrected fatigue strength is

S_e=326 \times 0.58=189 \mathrm{~MPa}

M_m=\frac{1}{2}\left(M_{\max }+M_{\min }\right)=\frac{1}{2}(3-3)=0

M_a=\frac{1}{2}(3+3)

M_a=3 \mathrm{~kN} \cdot \mathrm{m}

T_m=1.5 \mathrm{~kN} \cdot \mathrm{m}

T_a= 0

d=\left[\frac{16 N}{\pi \times S_e}\left\{\left(\frac{S_e}{\sigma_{\mathrm{ult}}}\right) \sqrt{3} \times\left(k_t T_m\right)+2\left(k_m M_a\right)\right\}\right]^{1 / 3}

d=\left[\frac{16 \times 1.5}{\pi \times 189}\left\{\left(\frac{189}{652}\right)\left(\sqrt{3} \times 2 \times 1.5 \times 10^6\right)+2 \times 1.5 \times 3 \times 10^6\right\}\right]^{1 / 3}

d = 75.16 mm

d = 15 mm

Using the equivalent bending moment criterion, the equivalent bending moment is

M_{e q}=\frac{1}{2}\left[k_m M+\sqrt{\left(k_m M\right)^2+\left(k_t T\right)^2}\right]

=\frac{1}{2}\left[1.5 \times 3.0 \times 10^6+\sqrt{\left(1.5 \times 3 \times 10^6\right)^2+\left(2 \times 1.5 \times 10^6\right)^2}\right]

= 4954163.457 N·mm

Design equation is

\sigma_b=\sigma_{\mathrm{all}}=\frac{32 M_{e q}}{\pi d^3}

\frac{652}{1.5}=\frac{32 \times 4954163.457 \times 1000}{\pi \times d^3}

d=\left\{\frac{32 \times 4954163.457 \times 1.5}{\pi \times 652}\right\}^{1 / 3}=48.78 \mathrm{~mm}

d = 50 mm

Using the maximum shear stress criterion, the equivalent torque is

T_{e q}=\sqrt{\left(k_m M\right)^2+\left(k_t T\right)^2}

=\sqrt{\left(1.5 \times 3 \times 10^6\right)^2+\left(2 \times 1.5 \times 10^6\right)^2}

= 5408326.913 N·mm

Design equation is

\tau_{\text {all }}=\frac{16 T_{e q}}{\pi d^3}

Assuming \tau_{\text {all }}=0.5 \times \frac{\sigma_{\mathrm{ult}}}{N}

\frac{0.5 \times 652}{1.5}=\frac{16 \times 5408326.913}{\pi \times d^3}

d=\left\{\frac{16 \times 5408326.913 \times 1.5}{\pi \times 652 \times 0.5}\right\}^{1 / 3}=50.23 \mathrm{~mm}

d = 51 mm

The safe diameter is 75 mm as obtained with fatigue design aspect. This explains the use of fatigue aspect of shaft design in case of rotating shaft with stationary loads.

Related Answered Questions