Holooly Plus Logo

Question 21.12: A single-acting reciprocating pump has a piston diameter 15 ......

A single-acting reciprocating pump has a piston diameter 15 cm and crank radius 20 cm. It delivers water to a tank 16 m above the pump through a delivery pipe of 8 cm in diameter and 22 m long. If the separation occurs when the pressure inside the cylinder falls below 2.5 m of water absolute, find the maximum speed at which the pump can be run without separation. Assume atmospheric pressure = 10.3 m of water.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Given data:

Diameter of piston                         D = 15 cm = 0.15 m

Crank radius                                   r = 20 cm = 0.20 m

Diameter of delivery pipe            d_{d}=8\;{\mathrm{cm}}=0.08\;{\mathrm{m}}

Length of delivery pipe              l_{d}=22\;\mathrm{m}

Delivery head                                h_{d}=16\;\mathrm{m}

Atmospheric pressure head        h_{a t m}=10.3~{\mathrm{m~of~water}}

Separation pressure head            h_{s e p}=2.5\,\mathrm{m~of~water}\,(\mathrm{abs})

Area of piston is given by

\ A={\frac{\pi}{4}}D^{2}={\frac{\pi}{4}}(0.15)^{2}=0.01767\,{\mathrm{m}}^{2}

Area of delivery pipe is given by

a_{d}=\frac{\pi}{4}d_{d}^{2}=\frac{\pi}{4}(0.08)^{2}=0.00503\,{\mathrm{m}}^{2}

Pressure head at the end of the delivery stroke is given by

=h_{a t m}+h_{d}-h_{a d}

where h_{a d} is the acceleration head and is given by Eq. (21.18) as

h_{a d}=\frac{l_{d}}{g}\times\frac{A}{a_{d}}\,\omega^{2}r\cos\theta              [\because \theta=180^{\circ}]

={\frac{l_{d}}{g}}\times{\frac{A}{a_{d}}}\omega^{2}r

Since the absolute pressure head during delivery stroke is minimum at the end of the stroke, separation can take place at the end of the stroke. For that the pressure head at the end of the stroke is equal to the separation pressure head.

Thus, one can write

h_{s e p}=h_{a t m}+h_{d}-h_{a d}

or                h_{s e p}=h_{a t m}+h_{d}-{\frac{l_{d}}{g}}\times{\frac{A}{a_{d}}}\omega^{2}r

Substituting the values, we have

2.5=10.3+16-\frac{22}{9.81}\times\frac{0.01767}{0.00503}\times\omega^{2}\times0.20

or                  {\frac{22}{9.81}}\times{\frac{0.01767}{0.00503}}\times\omega^{2}\times 0.20=10.3+16-2.5

or                  1.5756\omega^{2}=23.8

or                {\boldsymbol{\omega}}^{2}={\frac{23.8}{1.5756}}=15.105

or                \omega={\sqrt{15.105}}=3.886\,\,{\mathrm{rad/s}}

Rotational speed is given by

N=\frac{60\omega}{2\pi}\               \left[\because \omega={\frac{2\pi N}{60}}\right]

={\frac{60\times3.886}{2\pi}}=37.11\,{\mathrm{rpm}}

Related Answered Questions