Holooly Plus Logo

Question 21.16: Water is flowing through a single-acting reciprocating pump ......

Water is flowing through a single-acting reciprocating pump having plunger diameter and crank radius of 250 mm and 200 mm, respectively. The centre of the pump is 3 m above the water level in the sump and it delivers water to a tank 14 m above the pump. The suction and delivery pipes are both of 100 mm in diameter. The lengths of the suction and delivery pipes are 5 m and 18 m respectively. If the pump is running at 35 rpm, find the power required to drive the pump. Assume Darcy’s friction factor f as 0.01.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Given data:
Diameter of piston                          D = 250 mm = 0.25 m

Crank radius                                    r = 200 cm = 0.20 m

Suction head                                    h_{s}=3\;{\textrm{m}}

Delivery head                                  h_{d}=14\;\mathrm{m}

Diameter of suction pipe              d_{s}=100\;\mathrm{mm}=0.10\;\mathrm{m}

Length of suction pipe                l_{s}=5  {\textrm{m}}

Diameter of delivery pipe          d_{d}=100\,\mathrm{mm}=0.10\,\mathrm{m}

Length of delivery pipe            l_{d}=18\operatorname{m}

Speed of pump                            N = 30 rpm

Darcy’s friction factor                f = 0.01

Area of piston is given by

A={\frac{\pi}{4}}D^{2}={\frac{\pi}{4}}(0.25)^{2}=0.049\,\mathrm{m^{2}\quad}

Area of suction and delivery pipe are given by

 a_{s}=a_{d}=\frac{\pi}{4}d_{s}^{2}=\frac{\pi}{4}(0.1)^{2}=0.00785\,\mathrm{m}^{2}

Angular speed is

\omega={\frac{2\pi N}{60}}={\frac{2\pi\times30}{60}}=3.142\;{\mathrm{rad/s}}

The maximum loss of head due to friction in suction pipe is computed from Eq. (21.23) as

h_{f s,m a x}={\frac{\mathcal{fl}_{s}}{d_{s}\times2g}}{\left({\frac{A}{a_{s}}}\omega r\right)}^{2}

={\frac{0.01\times5}{0.1\times2\times9.81}}\left({\frac{0.049}{0.00785}}\times3.142\times0.2\right)^{2}=0.392\,\mathrm{m}

The maximum loss of head due to friction in delivery pipe is computed from Eq. (21.24) as

h_{fd,m a x}=\frac{\mathcal{fl}_{d}}{d_{d}\times2g}{\left(\frac{A}{a_{d}}\omega r\right)^{2}}

={\frac{0.01\times18}{0.1\times2\times9.81}}\left({\frac{0.049}{0.00785}}\times3.142\times0.2\right)^{2}=1.411\,\mathrm{m}

Power required to drive the pump is given by Eq. (21.30) as

P=\rho g Q{\bigg(}h_{s}+h_{d}+{\frac{2}{3}}h_{f s,\,m a x}+{\frac{2}{3}}h_{f d,\,m a x}{\bigg)}

={\frac{\rho g A L N}{60}}\left(h_{s}+h_{d}+\frac{2}{3}h_{f s,m a x}+\frac{2}{3}h_{f d,m a x}\right)        \left[\because Q={\frac{A L N}{60}}\right]

={\frac{\mathrm{1000}\times9.81\times0.049\times0.4\times30}{60}}\left(3+14+{\frac{2}{3}}\times0.392+{\frac{2}{3}}\times1.411\right)\mathbf{W}

=96.138\times(3+14+0.261+0.94)=1749.8\ \mathrm{W}

Related Answered Questions