Holooly Plus Logo

Question 21.11: The piston diameter and stroke length of a single-acting rec......

The piston diameter and stroke length of a single-acting reciprocating pump are 100 mm and 250 mm, respectively. The diameter and length of suction pipe are 60 mm and 7 m, respectively. The suction lift of the pump is 4 m. If the separation occurs when the pressure inside the cylinder falls below 2.5 m of water absolute, find the maximum speed at which the pump can be run without separation. Assume atmospheric pressure = 10.3 m of water.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Given data:

Diameter of piston                               D=100 mm = 0.10 m

Stroke length                                        L = 250 mm = 0.25 m

Diameter of suction pipe                  {d}_{s} = 60 mm = 0.06 m

Length of suction pipe                      l_{s} = 7 m

Suction lift                                          h_{s}=4\;{\mathrm{m}}

Atmospheric pressure head            h_{a tm} = 10.3 m of water

Separation pressure head              h_{s e p} = 2.5 m of water (abs)

Crank radius is given by

r={\frac{L}{2}}={\frac{0.25}{2}}=0.125\operatorname{m}

Area of piston is given by

A={\frac{\pi}{4}}D^{2}={\frac{\pi}{4}}(0.10)^{2}=0.00785\,{\mathrm{m}}^{2}

Area of suction pipe is given by

a_{s}=\frac{\pi}4d_{s}^{2}=\frac{\pi}4(0.06)^{2}=0.00283\,\mathrm{m}^{2}

Pressure head at the beginning of the suction stroke is given by

=h_{a t m}-(h_{s}+h_{a s})

where h_{a s}  is the acceleration head and is given by Eq. (21.17) as

h_{a s}=\frac{l_{s}}{g}\times\frac{A}{a_{s}}\omega^{2}r\cos 0^{\circ}                                          \left[\because \theta=0^{\circ}\right]

=\frac{l_{s}}{g}\times\frac{A}{a_{s}}\omega^{2}r

Since the absolute pressure head during suction stroke is minimum at the beginning of the stroke, separation can take place at the beginning of the stroke. For that the pressure head at the beginning of the stroke is equal to the separation pressure head.
Thus, one can write

h_{s e p}=h_{a t m}-(h_{s}+h_{a s})

or                                      h_{s e p}=h_{a t m}-h_{s}-{\frac{l_{s}}{g}}\times{\frac{d}{a_{s}}}\omega^{2}r

Substituting the values, we have

2.5=10.3-4-{\frac{7}{9.81}}\times{\frac{0.00785}{0.00283}}\times\omega^{2}\times0.125

or                  {\frac{7}{9.81}}\times{\frac{0.00785}{0.00283}}\times\omega^{2}\times0.125=10.3-4-2.5=3.8

or                  0.2474\omega^{2}=3.8

or                \omega^{2}{=}\frac{3.8}{0.2474}=15.3597

or                \omega={\sqrt{15.3597}}=3.919\,\mathrm{rad/s}

Rotational speed is given by

N={\frac{60\omega}{2\pi}}                                            \left[\because \omega=\frac{2\pi N}{60}\right]

={\frac{60\times3.919}{2\pi}}=37.42\;\mathrm{rpm}

Related Answered Questions