Holooly Plus Logo

Question 3.32: Consider the mapping f : R → R given by  f(x) = 4x ⁄ (x² + 1......

Consider the mapping  f\colon\mathbb{R}\to\mathbb{R}  given by

f(x)={\frac{4x}{(x^{2}+1)}}\ .

Sketch the graph of f. Find an interval A = [—k, k] on the x-axis such that

(a) {f(x) |x ∈ A} = Im f;

(b) g : A → Im f given by g(a) =f(a) for every a ∈ A is a bijection.

Obtain a formula for  g^{-1}  : Im f → A

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Use calculus to determine the graph of f (Fig. S3.39). From this graph we see that Im f = [—2, 2] and that the required interval A is [—1, 1]. To find  g^{-1}  we set  y=4x/(x^{2}+1),  so that  y x^{2}-4x+y=0,   and solve this quadratic

for x in terms of y. We get

x=\left\{\begin{array}{l}\frac{4 \pm \sqrt{ }\left(16-4 y^2\right)}{2 y}=\frac{2 \pm \sqrt{ }\left(4-y^2\right)}{y} \text { if } y \neq 0 \\0 \quad \text { if } y=0 .\end{array}\right.

This suggests either that

g^{-1}(y)=\left\{\begin{array}{ccc}\frac{2+\sqrt{ }\left(4-y^2\right)}{y} & \text { if } & y \neq 0 \\0 & \text { if } & y=0,\end{array}\right.

or that

g^{-1}(y)=\left\{\begin{array}{ccc}\frac{2-\sqrt{ }\left(4-y^2\right)}{y} & \text { if } & y \neq 0 ; \\0 & \text { if } & y=0 .\end{array}\right.

The first possibility is excluded since, for  y\in[-1,1],  we have

{\frac{2+{\sqrt{(4-y^{2})}}}{y}}\not\in[-2,2].
1

Related Answered Questions