Holooly Plus Logo

Question 3.40: Let N* = {1, 2, 3,...} and for every k ∈ N* define Ik = {X ∈......

Let  \mathbb{N}^{\star}=\{1,2,3,\ldots\}  and for every k ∈ \mathbb{N}^{\star}  define

I_{k}=\{x\in\mathbb{N}^{*}\mid{\frac{1}{2}}k(k-1)\lt x\leqslant{\frac{1}{2}}k(k+1)\}.

(a) Show that I_k has k elements and that  \{I_{k}\mid k\in\mathbb{N}^{\star}\}  is a partition of   \mathbb{N}^{\star}.

(b) Define  f:\mathbb{N}^{*}\times\mathbb{N}^{*}\to\mathbb{N}^{*}  by

f(m,n)={\textstyle{\frac{1}{2}}}(m+n-2)(m+n-1)+m.

Show that  f(m,n)\in I_{m+n-1}    and deduce that

f(p,q)\in I_{m+n-1}\Leftrightarrow p+q=m+n.

Hence show that/is injective.
(c) For 1 ≤ r ≤ k show that f(r, k + 1 — r) ∈  I_{k}  and deduce that f is also surjective.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) It is helpful to compute a few of the  \,I_{k}.  For example,

I_{1}=\{1\},\quad I_{2}=\{2,3\},\quad I_{3}=\{4,5,6\},\quad I_{4}=\{7,8,9,10\}.

Now by the definition of  \,I_{k}  we have  {\textstyle\frac{1}{2}}k(k+1)\in I_{k}\,\ {\mathrm{and}}\ {\textstyle\frac{1}{2}}k(k+1)-k=  {\textstyle\frac{1}{2}}k(k-1)\not\in I_{k}.  It is clear from this that  \,I_{k}  consists of the k elements

{\textstyle\frac{1}{2}}k(k+1)-k+1,\dots,{\textstyle\frac{1}{2}}k(k+1).

Consequently we see that the  \,I_{k}   form a partition of  \mathbb{N}^{\star}.

(b) We observe that

{\textstyle\frac{1}{2}}(m+n-2)(m+n-1)+m={\textstyle\frac{1}{2}}(m+n)(m+n-1)+1-n

and that this belongs to  I_{m+n-1}  since the largest integer in  I_{m+n-1}  is  \textstyle{\frac{1}{2}}(m+n)(m+n-1)\quad{\mathrm{and}}\quad I_{m+n-1}  contains  m+n-1  integers. Thus  f(m,n)\in I_{m+n-1}.

Since  f(p,q)\in I_{p+q-1}.  and the   \,I_{k}.  from a partition, we have

f(p,q)\in I_{m+n-1}\Leftrightarrow I_{p+q-1}=I_{m+n-1}\\ \Leftrightarrow p+q-1=m+n-1\\ \Leftrightarrow p+q=m+n.

To show that f is injective, suppose that  f(p,\,q)=f(m,\,n).  Then p + q = m + n and so

\begin{array}{c}{{\frac{1}{2}(p+q-2)(p+q-1)+p=f(p,q)}}\\ {{}}{{=f(m,n)}}\\ {{}}{{=\frac{1}{2}(m+n-2)(m+n-1)+m}}\\ {{}}{{=\frac{1}{2}(p+q-1)(p+q-1)+m.}}\end{array}

Consequently we have that m=p, and hence also q = n. Thus (p, q) = (m, n) and so f is injective.

(c) We note that if  1\leqslant r\leqslant k  then

f(r,k+1-r)\in I_{r+(k+1-r)-1}=I_{k}\,.

But f is injective,  \,I_{k}  contains k elements, and there are k values of r; therefore we must have that every element of  \,I_{k}.  is the image of some element (r,k + 1 – r) under f. Since this is true for every  \,I_{k}.  in the partition, it follows that f is also surjective.

Related Answered Questions