Holooly Plus Logo

Question 3.44: For mappings f , g : R → R and every λ ∈ R define the mappin......

For mappings  f,\,g:\mathbb{R}\to\mathbb{R}  and every λ ∈  \mathbb{R}  define the mappings f + g, f • g and λ f from \mathbb{R}  to  \mathbb{R} in the usual way, namely by setting

(f + g)(x)=f(x) +g(x),       (f• g)(x)=f(x)g(x),

(λf)(x) = λf(x)

for every x ∈ \mathbb{R}.

(a) Show that there are bijections f, g with f + g not a bijection. Show also that there are bijections f, g with f•g not a bijection. Do there exist bijections f,g such that neither f + g nor f•g is a bijection?

(b) Prove that if  λ ≠ 0 then λf is a bijection if and only if f is a bijection.

(c) Define [fg] :  \mathbb{R}\to\mathbb{R}  by  [f,\ g]=f\circ g-g\circ f.  Do there exist bijections f,g with [fg] a bijection?

(d) If 0 denotes the mapping from  \mathbb{R}\ {\mathrm{~to~}}\ \mathbb{R}  described by x → 0, prove that, for all mappings f,g,h :  \mathbb{R}\to\mathbb{R},

[\,[f g]h]+[\,[g h]f\,]+\,[\,[h f]g\,]=0.
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) Take, for example,  f=\mathrm{id}_{\mathbb{R}}\ \mathrm{and}\ g=-\mathrm{id}_{\mathbb{R}}.  Then (f + g)(x) = 0 for every  x\in\mathbb{R}  and so f + g is not a bijection.

Consider now   f=\operatorname{id}_{\mathbb{R}}  and define  g:\mathbb{R}\to\mathbb{R}  by

g(x)=\left\{\begin{array}{c l l}{{\frac{1}{x}}}&{{\mathrm{~if~}}}&{{x\not=0;}}\\ {{0}}&{{\mathrm{~if~}}}&{{x=0.}}\end{array}\right.

Then g is a bijection; its graph is shown in Fig. S3.42.

Now

(f\cdot g)(x)=f(x)g(x)={\left\{\begin{array}{l l}{x \cdot\frac{1}{x}={{{1}}}}&{{\mathrm{if}}}&{{\mathrm{~}x\neq0;}}\\ {0 \cdot 0=0 \quad\mathrm{if}\quad x=0,}\end{array}\right.}

so f·g is not a bijection. For this f and g we also have

(f+g)(x)=\left\{\begin{array}{ccc}x+\frac{1}{x} & \text { if } & x \neq 0 ; \\ 0 & \text { if } & x=0 .\end{array}\right.

The equation  x+1/x=1  has no solution in  \mathbb{R}_{*}  so there is  no  x\in\mathbb{R}  such that  ({{f}}+g)(x)=1\,.  Thus f + g is not a bijection.

(b) Suppose that f is a bijection. Then for  \lambda\neq0   we have

(\lambda f)(x_{1})=(\lambda f)(x_{2})\Rightarrow\lambda f(x_{1})=\lambda f(x_{2})\\ \begin{array}{r}{\Rightarrow f(x_{1})=f(x_{2})}\\ {\Rightarrow x_{1}=x_{2}}\end{array}

and so  \lambda f   is injective. Also, since f is surjective, given any  y\in\mathbb{R},  there exists  t\in\mathbb{R}  with  f(t)=y/\lambda.  Then  (\lambda f)(t)=y  and hence   \lambda f   is also surjective. This shows that if f is a bijection then so is   \lambda f   for every  \lambda\neq0.   Suppose now that   \lambda f   is a bijection with  \lambda\neq0.  Applying the above result to   \lambda f    and  \mu=1/\lambda,   it follows that  \mu(\lambda f)=(1/\lambda)(\lambda f)=f   is also a bijection.

(c) Consider, for example, the mappings  f,g:\mathbb{R}\to\mathbb{R}{\mathrm{~given~by}}f(x)=x^{2},  g(x)=x+1.  We have

[f g](x)=f\left[g(x)\right]-g[f(x)]\\ \begin{array}{c}{{=(x+1)^{2}-(x^{2}+1)}}\\ {{=2x,}}\end{array}\\

so  \textstyle[f g]  is a bijection.

(d) We have

\left[[f g]h\right]=\left[(f\circ g-g\circ f)h\right]\\ \begin{array}{c}{=(f\circ g-g\circ f)\circ h-h\circ(f\circ g-g\circ f)}\\ {=f\circ g\circ h-g\circ f\circ h-h\circ f\circ g+h\circ g\circ f}\end{array}\\

and similarly

\begin{array}{l l}{{[[g h]f]=g\circ h\circ f-h\circ g\circ f-f\circ g\circ h+f\circ h\circ g,}}\\ {{[[h f]g]=h\circ f\circ g-f\circ h\circ g-g\circ h\circ f+g\circ f\circ h.}}\end{array}

Adding these together, we obtain the required result.

44

Related Answered Questions