Holooly Plus Logo

Question 3.43: Let Q+ = {x ∈ Q | x ≥ 0}. If a/b, c/d ∈ Q+ prove that a ⁄ b ......

Let  \mathbb{Q}_{+}=\lbrace x\in\mathbb{Q}\mid x\geqslant\mathbf{0}\rbrace.  If a/b, c/d ∈  \mathbb{Q}_{+}  prove that

{\frac{a}{b}}={\frac{c}{d}}\Rightarrow\left|{\frac{a+b}{{hcf}(a,b)}}\right|=\left|{\frac{c+d}{\operatorname{hcf}(c,d)}}\right|.

Deduce that the prescription

f{\biggl(}{\frac{a}{b}}{\biggr)}=\left|{\frac{a+b}{\operatorname{hcf}(a,b)}}\right|

defines a mapping  f:\mathbb{Q}_{+}\to\mathbb{Q}_{+}.  Is f a bijection?

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Let  \alpha=\operatorname{hcf}(a,\,b).  Then we have  a=a^{\prime}{\alpha},\,b=b^{\prime}{\alpha}~\mathrm{and}~a/b=a^{\prime}/b^{\prime},  the latter quotient being ‘in its lowest terms’ in the sense that  \operatorname{hcf}(a^{\prime},b^{\prime})=1.  Similarly, if  \beta=\mathrm{hcf}\left(c,\,d\right)\,\mathrm{then}\ c=c^{\prime}\beta,\,d=d^{\prime}\beta\ \mathrm{and}\ c/d=c^{\prime}/d^{\prime}   the latter being in its lowest terms. Thus, if a/b = c/d we have  a^{\prime}/b^{\prime}=c^{\prime}/d^{\prime}  so that either  a^{\prime}=c^{\prime},  b^{\prime}=d^{\prime}\operatorname{or}a^{\prime}=-c^{\prime},b^{\prime}=-d^{\prime}.  It follows that

\left|\frac{a+b}{\alpha}\right|=|a^{\prime}+b^{\prime}|=|c^{\prime}+d^{\prime}|=\left|\frac{c+d}{\beta}\right|.

The first part of the question is precisely the condition that is necessary to ensure that the given prescription defines a mapping from  \mathbb{O}_{+}  to itself. This mapping is not a bijection. For example, it fails to be injective:  we havef(2/3) = 5/1=f(3/2).

Related Answered Questions