Holooly Plus Logo

Question 9.5: Determining Critical Speed of a Hollow Shaft A shaft with in......

Determining Critical Speed of a Hollow Shaft

A shaft with inner and outer diameters of d and D , respectively, is mounted between bearings and supporting two wheels, as shown in Figure 9.8. Calculate the critical speed in rpm, applying (a) the Rayleigh method, and (b) the Dunkerley method.

Given: d =30 mm, D =50 mm.

Assumptions: The shaft is made of L =1.5 m long steel having E =210 GPa. The weight of the shaft is ignored. Bearings act as simple supports.

F9.8
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The moment of inertia of the cross-section is I=\frac{\pi}{4}\left(25^4-15^4\right)=267 \times 10^3  mm ^4 . The concentrated forces are W_C=20 \times 9.81=196.2  N \text { and } W_D=30 \times 9.81=294.3  N . Static deflections at C and D can be obtained by the equations for Case 6 of Table A.8:

\begin{aligned} & \text { For } a>b: \\ & -\frac{P b\left(L^2-b^2\right)^{3 / 2}}{9 \sqrt{3} E I L} \quad \theta_A=-\frac{P b\left(L^2-b^2\right)}{6 E I L} \quad \upsilon =\frac{P b x}{6 E I L}\left(x^2-L^2+b^2\right) \quad(x \leq a) \\ & x_m=\sqrt{\frac{L^2-b^2}{3}} \quad \theta_B=-\frac{P a\left(L^2-a^2\right)}{6 E I L} \quad \upsilon =\frac{P b(a-x)}{6 E I L}\left(x^2+a^2-2 L x\right) \quad(a \leq x \leq L) \end{aligned}     (equations for Case 6 of Table A.8)

\delta=\frac{W b x}{6 L E I}\left[L^2-b^2-x^2\right] \quad(0 \leq x \leq a)     (a)

\delta=\frac{W a(L-x)}{6 L E I}\left[2 L x-a^2-x^2\right] \quad(a \leq x \leq L)     (b)

Deflection at C . Due to the load at C,[L=1.5  m , b=1  m \text {, and } x=0.5  m \text {, } Equation (a)],

\delta_C^{\prime}=\frac{196.2(1)(0.5)\left(1.5^2-1^2-0.5^2\right)}{6(1.5)\left(267 \times 10^{-9}\right)\left(210 \times 10^9\right)}=0.194  mm (b)

Owing to the load a D [L=1.5  m , b=0.4  m \text {, and } x=0.5  m \text {, Equation (a) }] \text {, }

\delta_C^{\prime \prime}=\frac{294.3(0.4)(0.5)\left(1.5^2-0.4^2-0.5^2\right)}{6(1.5)(267 \times 210)}=0.215  mm

The total deflection is then

\delta_C=0.194+0.215=0.409  mm

Deflection at D . Due to the load at C,[a=0.5  m , x=1.1  m , \text { Equation (b) }] \text {, }

\delta_D^{\prime}=\frac{196.2(0.5)(15-1.1)\left[2(1.5)(1.1)-0.5^2-1.1^2\right]}{6(1.5)(267 \times 210)}=0.143  mm

Owing to the load at D [b=0.4  m , x=1.1  m \text {, Equation (a) }] \text {, }

\delta_D^{\prime \prime}=\frac{294.3(0.4)(1.1)\left(1.5^2-0.4^2-1.1^2\right)}{6(1.5)(267 \times 210)}=0.226  mm

and hence,

\delta_D=0.143+0.226=0.369  mm

a. Using Equation (9.18) with m =2, we have

n_{c r}=\frac{1}{2 \pi}\left[\frac{g\left(W_1 \delta_1+W_2 \delta_2+\cdots+W_m \delta_m\right)}{W_1 \delta_1^2+W_2 \delta_2^2+\cdots+W_m \delta_m^2}\right]^{1 / 2}=\frac{1}{2 \pi} \sqrt{\frac{g \Sigma W \delta}{\Sigma W \delta^2}}        (9.18)

\begin{aligned} n_{c r} & =\frac{1}{2 \pi}\left[\frac{9.81\left(196.2 \times 0.409 \times 10^{-3}+294.3 \times 0.369 \times 10^{-3}\right)}{196.2\left(0.409 \times 10^{-3}\right)^2+294.3\left(0.369 \times 10^{-3}\right)^2}\right]^{1 / 2} \\ & =25.37  cps =1522  rpm \end{aligned}

b. Equation (9.19) may be rewritten as

\frac{1}{n_{c r}^2}=\frac{1}{n_1^2}+\frac{1}{n_2^2}+\cdots+\frac{1}{n_m^2}     (9.19)

\frac{1}{n_{c r}^2}=\frac{1}{n_{c r, C}^2}+\frac{1}{n_{c r, D}^2}       (c)

Solving,

n_{c r}=\frac{n_{c r, C} \cdot n_{c r, D}}{\sqrt{n_{c r, C}^2+n_{c r, D}^2}}      (9.21)

where

n_{c r, C}=\frac{1}{2 \pi} \sqrt{\frac{g}{\delta_C^{\prime}}}=\frac{1}{2 \pi} \sqrt{\frac{9.81}{0.194\left(10^{-3}\right)}}=35.79  cps =2147  rpm

n_{c r, D}=\frac{1}{2 \pi} \sqrt{\frac{g}{\delta_D^{\prime \prime}}}=\frac{1}{2 \pi} \sqrt{\frac{9.81}{0.226\left(10^{-3}\right)}}=33.16  cps =1990  rpm

Equation (9.21) is therefore

n_{c r}=\frac{(2147)(1990)}{\sqrt{(2147)^2+(1990)^2}}=1459  rpm

Comments: A comparison of the results obtained shows that the Rayleigh’s equation overestimates and the Dunkerley’s equation underestimates the critical speed. It follows that the actual critical speed is between 1459 and 1522 rpm. The design of the shaft should avoid this operation range.

TABLE A.8
Deflections and Slopes of Variously Loaded Beams
Load and Support Maximum Deflection Slope at End Equation of Elastic Curve
\quad\quad\quad\quad\quad\quad\quad\quad
-\frac{P L^3}{3 E I} -\frac{P L^2}{3 E I} \upsilon  =\frac{P x^2}{3 E I}(x-3 L)
\quad\quad\quad\quad\quad\quad\quad\quad\quad -\frac{M L^2}{2 E I} -\frac{M L}{E I} \upsilon  =\frac{M x^2}{2 E I}
\quad\quad\quad\quad\quad\quad\quad\quad\quad -\frac{w L^4}{8 E I} -\frac{w L^3}{6 E I} \upsilon  =\frac{w x^2}{24 E I}\left(x^2-4 L x+6 L^2\right)
\quad\quad\quad\quad\quad\quad\quad\quad\quad -\frac{w_0 L^4}{30 E I} -\frac{w_0 L^3}{24 E I} \upsilon =\frac{w x^2}{120 E I}\left(x^2-4 L x+6 L^3\right)
\quad\quad\quad\quad\quad\quad\quad\quad\quad -\frac{P L^3}{48 E I} \pm \frac{P L^2}{16 E I} \upsilon  =\frac{P x}{48 E I}\left(4 x^2-3 L^2\right) \quad(x \leq L / 2)
\quad\quad\quad\quad\quad\quad\quad\quad For a>b : \\ \begin{gathered} -\frac{P b\left(L^2-b^2\right)^{3 / 2}}{9 \sqrt{3} E I L} \\ x_m=\sqrt{\frac{L^2-b^2}{3}} \end{gathered} \begin{aligned} & \theta_A=-\frac{P b\left(L^2-b^2\right)}{6 E I L} \\ & \theta_B=-\frac{P a\left(L^2-a^2\right)}{6 E I L} \end{aligned} \begin{aligned} & \upsilon =\frac{P b x}{6 E I L}\left(x^2-L^2+b^2\right) \quad(x \leq a) \\ & \upsilon =\frac{P b(a-x)}{6 E I L}\left(x^2+a^2-2 L x\right) \quad(a \leq x \leq L) \end{aligned}
\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \pm \frac{M L^3}{9 \sqrt{3} E I} \begin{gathered} \theta_A=-\frac{M L}{6 E I} \\ \theta_B=-\frac{M L}{3 E I} \end{gathered} \upsilon =\frac{M x}{6 E I L}\left(x^2-L^2\right)
\quad\quad\quad\quad\quad\quad\quad\quad\quad -\frac{5 w L^4}{384 E I} \pm \frac{w L^3}{24 E I} \upsilon =\frac{w x}{24 E I}\left(x^3-2 L x^2+L^3\right)
\quad\quad\quad\quad\quad\quad\quad\quad\quad
\pm \frac{M L^2}{36 \sqrt{12} E I} \pm \frac{M L}{24 E I} \upsilon =\frac{M x}{24 E I L}\left(4 x^2-L^2\right) \quad(x \geq L / 2)
\quad\quad\quad\quad\quad\quad\quad\quad\quad -\frac{P b^2 L}{3 E I} \begin{aligned} & \theta_A=-\frac{P a b}{6 E I} \\ & \theta_B=-\frac{P b}{6 E I}(2 L+b) \end{aligned} \upsilon =\frac{P b x}{6 a E I}\left(a^2-x^2\right) \quad(0 \leq x \leq a)

Related Answered Questions