Holooly Plus Logo

Question 9.CS.1: Motor-Belt-Drive Shaft Design for Steady Loading A motor tra......

Motor-Belt-Drive Shaft Design for Steady Loading

A motor transmits the power P at the speed of n by a belt drive to a machine (Figure 9.4(a)). The maximum tensions in the belt are designated by F_1 and F_2 with F_1 > F_2 . The shaft will be made of cold-drawn AISI 1020 steel of yield strength S_y . Note that the design of main and drive shafts of a gear box will be considered in Case Study 18.5. Belt drives are discussed in detail in Chapter 13.

Find: Determine the diameter D of the motor shaft according to the energy of distortion theory of failure, based on a factor of safety n with respect to yielding.

Given: Prescribed numerical values are

L=230  mn \quad a=70  mm \quad r=51  mm \quad P=55  kW

n_0=4500  rpm \quad S_y=390  MPa \quad(\text { from Table B.3) } n=3.5

Assumptions: Friction at the bearings is omitted; bearings act as simple supports. At maximum load F_1 = 5F_2 .

TABLE B.3
Mechanical Properties of Some Hot-Rolled (HR) and Cold-Drawn (CD) Steels
UNS Number AISI/ SAE Number Processing Ultimate

\text {Strength}^a

S_u (MPa)

Yield

\text {Strength}^a

S_y (MPa)

Elongation in 50 mm (%) Reduction in Area (%) Brinell Hardness (H_B)
G10060 1006 HR 300 170 30 55 86
CD 330 280 20 45 95
G10100 1010 HR 320 180 28 50 95
CD 370 300 20 40 105
G10150 1015 HR 340 190 28 50 101
CD 390 320 18 40 111
G10200 1020 HR 380 210 25 50 111
CD 470 390 15 40 131
G10300 1030 HR 470 260 20 42 137
CD 520 440 12 35 149
G10350 1035 HR 500 270 18 40 143
CD 550 460 12 35 163
G10400 1040 HR 520 290 18 40 149
CD 590 490 12 35 170
G10450 1045 HR 570 310 16 40 163
CD 630 530 12 35 179
G10500 1050 HR 620 340 15 35 179
CD 690 580 10 30 197
G10600 1060 HR 680 370 12 30 201
G10800 1080 HR 770 420 10 25 229
G10950 1095 HR 830 460 10 25 248
Source: ASM Handbook, vol. 1, ASM International, Materials Park, OH, 2020.
Note: To convert from MPa to ksi, divide given values by 6.895.
{ } ^ {a} Values listed are estimated ASTM minimum values in the size range 18–32 mm.
F9.4
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Reactions at bearings. From Equation (1.15), the torque applied by the pulley to the motor shaft equals

kW =\frac{F V}{1000}=\frac{T n}{9549}         (1.15)

T_{A C}=\frac{9549 P}{n_0}=\frac{9549(55)}{4500}=116.7  N \cdot m

The force transmitted through the belt is therefore

F_2-\frac{F_1}{5}=\frac{T_{A C}}{r}-\frac{116.7}{0.051}=2288  N

or

F_1=2860  N \text { and } F_2=572  N

Applying the equilibrium equations to the free-body diagram of the shaft (Figure 9.4(b)), we have

\Sigma M_A=3432(0.3)-R_B(0.23)=0, \quad R_B=4476.5  N

\Sigma F_y=R_A+R_B-3432=0, \quad R_A=1044.5  N

The results indicate that R_A and R_B act in the directions shown in the figure.

Principal stresses. The largest moment takes place at support B (Figure 9.4(c)) and has a value of

M_B=3432(0.07)=240.2  N \cdot m

Inasmuch as the torque is constant along the shaft, the critical sections are at B . It follows that

\tau=\frac{16 T}{\pi D^3}=\frac{16(116.7)}{\pi D^3}=\frac{1867.2}{\pi D^3}

\sigma_x=\frac{32 M}{\pi D^3}=\frac{32(240.2)}{\pi D^3}=\frac{7686.4}{\pi D^3}

and \sigma _y = 0. For the case under consideration, Equation (3.33) reduces to

\sigma_{\max , \min }=\sigma_{1,2}=\frac{\sigma_x+\sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x-\sigma_y}{2}\right)^2+\tau_{x y}^2}            (3.33)

\begin{aligned} \sigma_{1,2} & =\frac{\sigma_x}{2} \pm \sqrt{\left(\frac{\sigma_x}{2}\right)^2+\tau^2} \\ & =\frac{3843.2}{\pi D^3} \pm \frac{1}{\pi D^3} \sqrt{\frac{(7686.4)^2}{4}+(1867.2)^2} \\ & =\frac{1}{\pi D^3}(3843.2 \pm 4272.8) \end{aligned}

from which

\sigma_1=\frac{8116}{\pi D^3} \quad \sigma_2=-\frac{429.6}{\pi D^3}             (b)

Energy of distortion theory of failure. Through the use of Equation (6.14),

\left(\sigma_1^2-\sigma_1 \sigma_2+\sigma_2^2\right)^{1 / 2}=\frac{S_y}{n}       (6.14)

\left[\sigma_1^2-\sigma_1 \sigma_2+\sigma_2^2\right]^{1 / 2}=\frac{S_y}{n}

This, after introducing Equation (b), leads to

\frac{1}{\pi D^3}\left[(8116)^2-(8116)(-429.6)+(-429.6)^2\right]^{1 / 2}=\frac{390\left(10^6\right)}{3.5}

Solving,

D=0.0288  m =28.8  mm

Comment: A commercially available shaft diameter of 30 mm should be selected.

Related Answered Questions