Holooly Plus Logo

Question 9.4: Factor of Safety for a Stepped Shaft under Torsional Shock L......

Factor of Safety for a Stepped Shaft under Torsional Shock Loading

A stepped shaft of diameters D and d with a shoulder fillet radius r has been machined from AISI 1095 annealed steel and fixed at end A (Figure 9.6). Determine the factor of safety n, using the maximum shear stress theory incorporated with the Goodman fatigue relation.

Given: The free end C of the shaft is made to rotate back and forth between 1.0° and 1.5° under torsional minor shock loading. The shaft is at room temperature.

Data:

L=300  mm , \quad d=30  mm , \quad D=60  mm , \quad r=2  mm ,

K_{s t}=1.5 \quad(\text { by Table 9.1), } \quad G=79  GPa    (from Table B.1)

S_u=658  MPa \text { and } H_B=192 \text { (by Table B.4) }

Design Assumption: A reliability of 95% is used.

TABLE 9.1
Shock Factors in Bending and Torsion
Nature of Loading K_{s b}, K_{s t}
Gradually applied or steady 1.0
Minor shocks 1.5
Heavy shocks 2.0

 

TABLE B.4
Mechanical Properties of Selected Heat-Treated Steels
AISI Number Treatment Temperature (°C) Ultimate Strength S_u (MPa) Yield Strength S_y (MPa) Elongation in 50 mm (%) Reduction in Area (%) Brinell Hardness (HB)
1030 WQ&T 205 848 648 17 47 495
WQ&T 425 731 579 23 60 302
WQ&T 650 586 441 32 70 207
Normalized 925 521 345 32 61 149
Annealed 870 430 317 35 64 137
1040 OQ&T 205 779 593 19 48 262
OQ&T 425 758 552 21 54 241
OQ&T 650 634 434 29 65 192
Normalized 900 590 374 28 55 170
Annealed 790 519 353 30 57 149
1050 WQ&T 205 1120 807 9 27 514
WQ&T 425 1090 793 13 36 444
WQ&T 650 717 538 28 65 235
Normalized 900 748 427 20 39 217
Annealed 790 636 365 24 40 187
1060 OQ&T 425 1080 765 14 41 311
OQ&T 540 965 669 17 45 277
OQ&T 650 800 524 23 54 229
Normalized 900 776 421 18 37 229
Annealed 790 626 372 11 38 179
1095 OQ&T 315 1260 813 10 30 375
OQ&T 425 1210 772 12 32 363
OQ&T 650 896 552 21 47 269
Normalized 900 1010 500 9 13 293
Annealed 790 658 380 13 21 192
4130 WQ&T 205 1630 1460 10 41 467
WQ&T 425 1280 1190 13 49 380
WQ&T 650 814 703 22 64 245
Normalized 870 670 436 25 59 197
Annealed 865 560 361 28 56 156
4140 OQ&T 205 1770 1640 8 38 510
OQ&T 425 1250 1140 13 49 370
OQ&T 650 758 655 22 63 230
Normalized 870 870 1020 18 47 302
Annealed 815 655 417 26 57 197
Source: ASM Metals Reference Book, 3rd ed. Materials Park, OH, American Society for Metals, 1993.
Notes: To convert from MPa to ksi, divide given values by 6.895.
Values tabulated for 25 mm round sections and of gage length 50 mm. The properties for quenched and tempered steel are
from a single heat: OQ&T, oil-quenched and tempered; WQ&T, water-quenched and tempered.
F9.6
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

From the geometry of the shaft, D=2d and L_{AB} =L_{BC} =L . The polar moment of inertia of the shaft segments are

J_{B C}=\frac{\pi d^4}{32} \quad J_{A B}=\frac{\pi D^4}{32}=16 J_{B C}

in which

J_{B C}=\frac{\pi}{32}(0.030)^4=79.52\left(10^{-9}\right)  m ^4

The total angle of twist is

\phi=\frac{T L}{G}\left(\frac{1}{16 J_{B C}}+\frac{1}{J_{B C}}\right)

or

T=\frac{16 G J_{B C} \phi}{17 L}

Substituting the numerical data, this becomes T=19,708.5 \phi . Accordingly, for \phi_{\max }=0.0262  rad and \phi_{\min }=0.0175  rad , it follows that T_{\max }=516.4  N \cdot m \text { and } T_{\min }=344.9  N \cdot m . Hence,

T_m=430.7  N \cdot m \quad T_a=85.8  N \cdot m

The modified endurance limit, using Equation (7.6), is

S_e=C_f C_r C_s C_t\left(1 / K_f\right) S_e^{\prime}     (7.6)

S_e=C_f C_r C_s C_t\left(\frac{1}{K_f}\right) S_e^{\prime}

where

C _f=A_u^b=4.51\left(658^{-0265}\right)=0.808 (by Equation (7.7) and Table 7.2)

C_f=A S_u^b    (7.7)

C_r=0.87 (from Table 7.3)

C_{ s }=0.85 (by Equation (7.9))

C_s= \begin{cases}0.85 & (13  mm <D \leq 50  mm ) \quad\left(\frac{1}{2}<D \leq 2 \text { in. }\right) \\ 0.70 & (D>50  mm ) \quad(D>2 in .)\end{cases}    (7.9)

C_t=1 (for normal temperature)

S_e^{\prime}=0.29 S_u=190.8  MPa (applying Equation (7.4))

\text { Iron} \left(S_{e s}^{\prime}\right)=0.32 S_u       (7.4)

and

K_t=1.6 (from Figure C.8, for D/d =2 and r/d =0.067)

q = 0.92 (from Figure 7.9, for r =2 mm and H_B =192 annealed steel)

K_f=1+0.92(1.6-1)=1.55 (using Equation (7.13b))

K_f=1+q\left(K_t-1\right)     (7.13b)

Therefore,

S_e=(0.808)(8.87)(0.85)(1)(1 / 1.55)(190.8)=73.55  MPa

We now use Equation (9.13) with M_m =M_a =0 to estimate the factor of safety:

\frac{S_u}{n}=\frac{32}{\pi D^3}\left[K_{s b}\left(M_m+\frac{S_u}{S_e} M_a\right)^2+K_{s t}\left(T_m+\frac{S_u}{S_e} T_a\right)^2\right]^{1 / 2}      (9.13)

\frac{S_u}{n}=\frac{32}{\pi d_{B C}^3}\left[K_{s t}\left(T_m+\frac{S_u}{S_e} T_a\right)^2\right]^{1 / 2}     (9.17)

Introducing the numerical values,

\frac{658\left(10^6\right)}{n}=\frac{32}{\pi(0.03)^3}\left[1.5\left(430.2+\frac{658}{73.55} 86.2\right)^2\right]^{1 / 2}

This results in n=1.19.

TABLE 7.2
Surface Finish Factors C_f
A
Surface Finish MPa ksi b
Ground 1.58 1.34 -0.085
Machined or cold drawn 4.51 27 -0.265
Hot rolled 57.7 144 -0.718
Forged 272.0 39.9 -0.995

 

TABLE 7.3
Reliability Factors
Survival Rate (%) C_r
50 1.00
90 0.89
95 0.87
98 0.84
99 0.81
99.9 0.75
99.99 0.70
FC.8
F7.9

Related Answered Questions