Holooly Plus Logo

Question 18.PS.8: Determining E°cell and ΔG° Consider the redox reaction Zn^2+......

Determining E^\circ_{cell} and ΔG°

Consider the redox reaction

Zn^{2+}(aq) + H_2(g) + 2 H_2O(\ell) → Zn(s) + 2 H_3O^+(aq)

Use the standard reduction potentials in Table 18.1 to calculate E^\circ_{cell} and ΔG° and to determine whether the reaction as written favors product formation.

Table 18.1   Standard Reduction Potentials in Aqueous Solution at 25 °C*
Reduction Half-Reaction E° (V)
F_2(g) + 2 e^- →2 F^-(aq) + 2.87
H_2O_2(aq) + 2 H_3O^+(aq) + 2 e^- →4 H2O(\ell) + 1.77
PbO_2(s) + SO_4^{2-} (aq) + 4 H_3O^+(aq) +2 e^- →PbSO_4 (s) +6 H_2O(\ell) + 1.685
MnO_4^-(aq) + 8 H_3O^+(aq)  + 5 e^- →Mn^{2+}(aq) +12 H_2O(\ell) + 1.51
Au^{3+}(aq) + 3 e^- →Au(s) + 1.50
Cl_2(g) + 2 e^- →2 Cl^-(aq) + 1.358
Cr_2O_7^{2-}(aq) + 14 H_3O^+(aq) + 6 e^- →2 Cr^{3+}(aq) + 21 H_2O(\ell) + 1.33
O_2(g) + 4 H_3O^+(aq) + 4 e^- →6 H_2O(\ell) + 1.229
Br_2 (\ell) + 2 e^- →2 Br^-(aq) + 1.066
NO_3^-(aq) + 4 H_3O^+(aq) + 3 e^- →NO(g) + 6 H_2O(\ell) + 0.96
OCl^-(aq) + H_2O(\ell) + 2 e^- →Cl^-(aq) + 2 OH^-(aq) + 0.89
Hg^{2+}(aq) + 2 e^- →Hg(\ell) + 0.855
Ag^+(aq) + e^- →Ag(s) + 0.7994
Hg_2^{2+}(aq) + 2 e^- →2 Hg(\ell) + 0.789
Fe^{3+}(aq) + e^- →Fe^{2+}(aq) + 0.771
I_2 (s) + 2 e^- →2 I^-(aq) + 0.535
O_2(g) + 2 H_2O(\ell) + 4 e^- →4 OH^-(aq) + 0.403
Cu^{2+}(aq) + 2 e^- →Cu(s) + 0.337
Sn^{4+}(aq) + 2 e^- →Sn^{2+}(aq) + 0.15
2 H_3O^+(aq) + 2 e^- →H_2(g) + 2 H_2O(\ell) 0.00
Sn^{2+}(aq) + 2 e^- →Sn(s) – 0.14
Ni^{2+}(aq) + 2 e^- →Ni(s) – 0.25
PbSO_4 (s) + 2 e^- →Pb(s) + SO_4^{2-}(aq) – 0.356
Cd^{2+}(aq) + 2 e^- →Cd(s) – 0.403
Fe^{2+}(aq) + 2 e^- →Fe(s) – 0.44
Zn^{2+}(aq) + 2 e^- →Zn(s) – 0.763
2 H_2O(\ell) + 2 e^- →H_2(g) + 2 OH^-(aq) – 0.8277
Al^{3+}(aq) + 3 e^- →Al(s) – 1.66
Mg^{2+}(aq) + 2 e^- →Mg(s) – 2.37
Na^+(aq) + e^- →Na(s) – 2.714
K^+(aq) + e^- →K(s) – 2.925
Li^+(aq) + e^- →Li (s) – 3.045
*In volts (V) versus the standard hydrogen electrode.
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

E^\circ_{cell} = – 0.763  V; ΔG° = 147  kJ. The reaction as written is not product-favored.

Strategy and Explanation   The first step is to write the half-reactions for the oxidation and reduction that occur and to use their standard reduction potentials from Table 18.1.

Reduction:              Zn^{2+}(aq) + 2 e^-→ Zn(s)                 E^\circ_{cathode} = – 0.763  V

Oxidation:             H_2(g) + 2 H_2O(\ell) → 2 H_3O^+(aq) + 2 e^-                  E^\circ_{node} = 0  V

We obtain the E^\circ_{cell} for the reaction from the standard reduction potentials for the two halfreactions.

E^\circ_{cell} = E^\circ_{cathode} –  E^\circ_{anode} = –  0.763  V  –  0  V = –  0.763  V

Since E^\circ_{cell} is negative, the reaction is not product-favored in the direction written. Zn^{2+} will not oxidize H_2O. The reverse reaction is product-favored; that is, zinc metal reacts with acid.

From the calculated E^\circ_{cell} we can calculate ΔG°.

ΔG° =- nFE^\circ_{cell}
= – (2  mol  e^-) × (\frac{9.65 × 10^4  C}{1  mol  e^-})(\frac{1  J}{1  V × 1  C})(- 0.763  V)
= 1.47 × 10^5  J = 147  kJ

The positive value for ΔG° also shows that the reaction as written is not product-favored.

Reasonable Answer Check   The given oxidation is the half-reaction at the standard hydrogen electrode with a potential of zero, so the overall reaction is governed by the Zn reduction. The negative cell potential and the positive ΔG° are consistent with the reaction being reactant-favored as written.

Related Answered Questions