Holooly Plus Logo

Question 18.PS.9: Equilibrium Constant for a Redox Reaction Calculate the equi......

Equilibrium Constant for a Redox Reaction

Calculate the equilibrium constant K_c for the reaction

Fe(s) + Cd^{2+}(aq) \rightleftharpoons Fe^{2+}(aq) + Cd(s)

using the standard reduction potentials listed in Table 18.1.

Table 18.1   Standard Reduction Potentials in Aqueous Solution at 25 °C*
Reduction Half-Reaction E° (V)
F_2(g) + 2 e^- →2 F^-(aq) + 2.87
H_2O_2(aq) + 2 H_3O^+(aq) + 2 e^- →4 H2O(\ell) + 1.77
PbO_2(s) + SO_4^{2-} (aq) + 4 H_3O^+(aq) +2 e^- →PbSO_4 (s) +6 H_2O(\ell) + 1.685
MnO_4^-(aq) + 8 H_3O^+(aq)  + 5 e^- →Mn^{2+}(aq) +12 H_2O(\ell) + 1.51
Au^{3+}(aq) + 3 e^- →Au(s) + 1.50
Cl_2(g) + 2 e^- →2 Cl^-(aq) + 1.358
Cr_2O_7^{2-}(aq) + 14 H_3O^+(aq) + 6 e^- →2 Cr^{3+}(aq) + 21 H_2O(\ell) + 1.33
O_2(g) + 4 H_3O^+(aq) + 4 e^- →6 H_2O(\ell) + 1.229
Br_2 (\ell) + 2 e^- →2 Br^-(aq) + 1.066
NO_3^-(aq) + 4 H_3O^+(aq) + 3 e^- →NO(g) + 6 H_2O(\ell) + 0.96
OCl^-(aq) + H_2O(\ell) + 2 e^- →Cl^-(aq) + 2 OH^-(aq) + 0.89
Hg^{2+}(aq) + 2 e^- →Hg(\ell) + 0.855
Ag^+(aq) + e^- →Ag(s) + 0.7994
Hg_2^{2+}(aq) + 2 e^- →2 Hg(\ell) + 0.789
Fe^{3+}(aq) + e^- →Fe^{2+}(aq) + 0.771
I_2 (s) + 2 e^- →2 I^-(aq) + 0.535
O_2(g) + 2 H_2O(\ell) + 4 e^- →4 OH^-(aq) + 0.403
Cu^{2+}(aq) + 2 e^- →Cu(s) + 0.337
Sn^{4+}(aq) + 2 e^- →Sn^{2+}(aq) + 0.15
2 H_3O^+(aq) + 2 e^- →H_2(g) + 2 H_2O(\ell) 0.00
Sn^{2+}(aq) + 2 e^- →Sn(s) – 0.14
Ni^{2+}(aq) + 2 e^- →Ni(s) – 0.25
PbSO_4 (s) + 2 e^- →Pb(s) + SO_4^{2-}(aq) – 0.356
Cd^{2+}(aq) + 2 e^- →Cd(s) – 0.403
Fe^{2+}(aq) + 2 e^- →Fe(s) – 0.44
Zn^{2+}(aq) + 2 e^- →Zn(s) – 0.763
2 H_2O(\ell) + 2 e^- →H_2(g) + 2 OH^-(aq) – 0.8277
Al^{3+}(aq) + 3 e^- →Al(s) – 1.66
Mg^{2+}(aq) + 2 e^- →Mg(s) – 2.37
Na^+(aq) + e^- →Na(s) – 2.714
K^+(aq) + e^- →K(s) – 2.925
Li^+(aq) + e^- →Li (s) – 3.045
*In volts (V) versus the standard hydrogen electrode.
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.
K_c = K° = 22

Strategy and Explanation   We first need to calculate E^\circ_{cell} . To do so we separate the reaction into its two half-reactions.

Fe( s ) → Fe^{2+}(aq) + 2 e^-                 E^\circ_{anode} = – 0.44  V

\underline{Cd^{2+}(aq) + 2 e^- → Cd(s)                  E^\circ_{cathode} = – 0.40  V}

Fe( s ) + Cd^{2+}(aq) → Fe^{2+}(aq) + Cd(s)                 E^\circ_{cell} = + 0.04  V

Two moles of electrons are transferred.

log  K° = \frac{nE^\circ_{cell}}{0.0592  V} = \frac{(2)(0.04  V)}{0.0592  V} = 1.35            and           K = 10^{1.35} = 22

The value is larger than 1, which shows that the reaction is product-favored as written. Since the reaction occurs in aqueous solution, K_c = K° = 22.

Reasonable Answer Check   The value for E^\circ_{cell} is positive, which indicates a product-favored reaction, as does K° > 1.

Related Answered Questions