Holooly Plus Logo

Question 18.PS.7: Predicting Redox Reactions (a) Will zinc metal react with a ......

Predicting Redox Reactions

(a) Will zinc metal react with a 1  \text{M}  \text{Ag}^+(aq) solution? If so, what is E° for the reaction?
(b) Will a 1  \text{M}  \text{Fe}^{2+}(aq) solution react with metallic tin? If so, what is E° for the reaction?

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) Yes. E^\circ_{cell} = + 1.56  V
(b) No. E^\circ_{cell} is negative.

Strategy and Explanation We will answer the questions by referring to Table 18.1 and comparing the positions of the reactants there.

(a) Ag^+(aq) is above metallic zinc in Table 18.1, so it is a better oxidizing agent, and we predict that it can oxidize zinc, causing metallic zinc atoms to form Zn^{2+}(aq) ions. To be certain, we combine the half-cell reactions to give the net equation. We subtract the half-cell potentials, which yields a positive E^\circ_{cell}, so this reaction is product-favored, as we predicted from Table 18.1.

Zn( s ) → Zn^{2+} (aq, 1  M) + 2 e^-                  E^\circ_{anode} = – 0.763  V

\underline{2 [Ag^+ (aq, 1  M) + e^- → Ag(s)]                  E^\circ_{cathode} = + 0.80  V}

Zn( s ) + 2 Ag ^+ (aq, 1  M) → Zn^{2+} (aq, 1  M) + 2 Ag( s )                E^\circ_{cell} = ?

E^\circ_{cell} = E^\circ_{cathode} – E^\circ_{anode} = + 0.80  V – (- 0.763  V) = + 1.56  V

The positive value for E^\circ_{cell} shows that this is a product-favored reaction.

(b) We evaluate the reaction between Fe^{2+}(aq) and metallic Sn the same way. Fe^{2+}(aq) is on the left in Table 18.1 below Sn(s), which is on the right. Therefore, Fe^{2+}(aq) is not a strong enough oxidizing agent to oxidize Sn(s), and we predict that this reaction will not occur. The combined half-reactions are

Sn( s ) → Sn^{2+} (aq) + 2 e^-                  E^\circ_{anode} = – 0.14  V

\underline{Fe^{2+}(aq) + 2 e^- → Fe(s)                  E^\circ_{cathode} = – 0.44  V}

Sn( s ) + Fe^{2+} (aq) → Sn^{2+} (aq) + Fe(s)                E^\circ_{cell} = ?

E^\circ_{cell} = E^\circ_{cathode} – E^\circ_{anode} = – 0.14  V – (- 0.14  V) = – 0.30  V

The negative value for E^\circ_{cell} shows that this process is reactant-favored, and it will not form appreciable quantities of products under standard conditions. In fact, iron metal will reduce Sn^{2+} (E^\circ_{cell} = + 0.30  V), the reverse of the net reaction shown above.

Table 18.1   Standard Reduction Potentials in Aqueous Solution at 25 °C*
Reduction Half-Reaction E° (V)
F_2(g) + 2 e^- →2 F^-(aq) + 2.87
H_2O_2(aq) + 2 H_3O^+(aq) + 2 e^- →4 H2O(\ell) + 1.77
PbO_2(s) + SO_4^{2-} (aq) + 4 H_3O^+(aq) +2 e^- →PbSO_4 (s) +6 H_2O(\ell) + 1.685
MnO_4^-(aq) + 8 H_3O^+(aq)  + 5 e^- →Mn^{2+}(aq) +12 H_2O(\ell) + 1.51
Au^{3+}(aq) + 3 e^- →Au(s) + 1.50
Cl_2(g) + 2 e^- →2 Cl^-(aq) + 1.358
Cr_2O_7^{2-}(aq) + 14 H_3O^+(aq) + 6 e^- →2 Cr^{3+}(aq) + 21 H_2O(\ell) + 1.33
O_2(g) + 4 H_3O^+(aq) + 4 e^- →6 H_2O(\ell) + 1.229
Br_2 (\ell) + 2 e^- →2 Br^-(aq) + 1.066
NO_3^-(aq) + 4 H_3O^+(aq) + 3 e^- →NO(g) + 6 H_2O(\ell) + 0.96
Ocl^-(aq) + H_2O(\ell) + 2 e^- →Cl^-(aq) + 2 OH^-(aq) + 0.89
Hg^{2+}(aq) + 2 e^- →Hg(\ell) + 0.855
Ag^+(aq) + e^- →Ag(s) + 0.7994
Hg_2^{2+}(aq) + 2 e^- →2 Hg(\ell) + 0.789
Fe^{3+}(aq) + e^- →Fe^{2+}(aq) + 0.771
I_2 (s) + 2 e^- →2 I^-(aq) + 0.535
O_2(g) + 2 H_2O(\ell) + 4 e^- →4 OH^-(aq) + 0.403
Cu^{2+}(aq) + 2 e^- →Cu(s) + 0.337
Sn^{4+}(aq) + 2 e^- →Sn^{2+}(aq) + 0.15
2 H_3O^+(aq) + 2 e^- →H_2(g) + 2 H_2O(\ell) 0.00
Sn^{2+}(aq) + 2 e^- →Sn(s) – 0.14
Ni^{2+}(aq) + 2 e^- →Ni(s) – 0.25
PbSO_4 (s) + 2 e^- →Pb(s) + SO_4^{2-}(aq) – 0.356
Cd^{2+}(aq) + 2 e^- →Cd(s) – 0.403
Fe^{2+}(aq) + 2 e^- →Fe(s) – 0.44
Zn^{2+}(aq) + 2 e^- →Zn(s) – 0.763
2 H_2O(\ell) + 2 e^- →H_2(g) + 2 OH^-(aq) – 0.8277
Al^{3+}(aq) + 3 e^- →Al(s) – 1.66
Mg^{2+}(aq) + 2 e^- →Mg(s) – 2.37
Na^+(aq) + e^- →Na(s) – 2.714
K^+(aq) + e^- →K(s) – 2.925
Li^+(aq) + e^- →Li (s) – 3.045
*In volts (V) versus the standard hydrogen electrode.

Related Answered Questions